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The vlei rat Otomys irroratus has a wide distribution in southern Africa with several datasets indicating the
presence of two putative species (O. irroratus and O. auratus). In the present study we use mitochrondrial cyt b
data (~950 bp) from 98 specimens (including museum material) collected throughout the range of the species to
determine the geographical limits of the two recognized species, and we link this to niche modelling to validate
these species. Phylogenetic analysis of the DNA sequence data, using maximum parsimony, neighbour joining and
Bayesian inference, retrieved two divergent statistically well-supported clades. Clade A occurs in the Western and
Eastern Cape while Clade B occurs in the Free State, KwaZulu-Natal, Northern Cape and Mpumalanga provinces
of South Africa and Zimbabwe. Mean sequence divergence between the two clades (A and B) was 7.0% and between
sub-clades comprising clade B it was 4.8%; the two clades diverged during the Pleistocene. Within Clade A the
mean sequence divergence among specimens was 1.91%. Niche modelling revealed that the incipient species occupy
distinct bioclimatic niches associated with seasonality of precipitation. Our data allow insightful analysis into the
factors that could have led to cladogenesis within this rodent. More significantly, the new data enable us to pinpoint
the Eastern Cape province as a contact zone for the divergent species. © 2011 The Linnean Society of London,
Biological Journal of the Linnean Society, 2011, 104, 192–206.
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INTRODUCTION

Phylogeographical approaches have been used suc-
cessfully to uncover population genetic structure of
numerous small mammal species, including rodents
(Avise, 2000; Michaux et al., 2004; Vega et al., 2007;
Yuasa et al., 2007; Mitsainas et al., 2009). These
studies have revealed that species characterized by
wide geographical distribution ranges often harbour
multiple evolutionary units (Rambau, Robinson &
Stanyon, 2003; Michaux et al., 2004; Willows-Munro

& Matthee, 2009; Taylor et al., 2009a). The vlei rat
Otomys irroratus is a mesic adapted grassland species
that is widely distributed throughout southern Africa.
In southern Africa it occurs along the southern and
eastern coastal belt and adjacent interior into
Lesotho, eastern Zimbabwe, Swaziland and western
Mozambique (Skinner & Chimimba, 2005). Several
studies have revealed a complex evolutionary history
for this endemic southern African species (Contrafatto
et al., 1992a; Rambau, Elder & Robinson, 2001;
Taylor et al., 2009b).

In the first instance, O. irroratus has a variable
chromosome number, 2n = 23–32, comprising at least*Corresponding author. E-mail: rvr2@sun.ac.za
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four cytotypes which are defined by the presence
or absence of a compound chromosome, centric
fusions, pericentric inversions, B chromosomes, and
the addition/deletion of heterochromatic short arms
(Meester et al., 1992; Contrafatto et al., 1992a, c;
Rambau et al., 2001; Taylor et al., 2009b). The various
O. irroratus cytotypes appear to be distributed in
different bioclimatic regions in South Africa (Taylor,
Contrafatto & Willan, 1994). However, allozymes
and immunochemical data revealed that populations
characterized by various cytotypes were genetically
invariant (D = 0.03; Taylor et al., 1992; Contrafatto,
Van Der Berg & Grace, 1997). The low genetic varia-
tion detected within O. irroratus at the protein level
may be due to balancing selection or slow rate of
protein evolution which could result in a lack of
genetic differentiation among allopatric conspecific
populations (Avise, 1998; Crochet, 2000; Piel & Nutt,
2000).

Breeding experiments in which specimens with a
diploid number of 2n = 24 (with a complex tandem
fusion) were crossbred with specimens with 2n = 30
(without the tandem fusion) resulted in high levels
of antagonism or reduced viability in the progeny
(Pillay, Willan & Meester, 1992; Pillay, Willan &
Cooke, 1995). These results suggest both pre- and
post-zygotic barriers may preclude gene flow between
some populations, and allude to the presence of two
evolutionary lineages within the taxon. This was con-
firmed by a recent analysis of several O. irroratus
populations, using mtDNA cytochrome b (cyt b), skull
morphometrics, and cytogenetics which retrieved two
lineages (Taylor et al., 2009b). The two evolutionary
lineages (designated as O. irroratus and O. auratus)
were demarcated by 6.4% sequence divergence, the
presence or absence of pericentric inversions, and
significant differentiation in cranial morphology.
However, the detection of two lineages (one in the
Western Cape and the other in the Eastern Cape and
KwaZulu-Natal provinces) was inferred from limited
samples (N = 19) and geographical coverage (17 locali-
ties) and consequently did not allow for a thorough
description of the phylogeography and demographic
history of the species. In this study, we build on these
initial findings and we significantly increase the
sample size (using fresh tissue samples and museum
material) to 98, of which the majority were newly
sequenced. We also improved the geographical cover-
age, which now allows insightful analysis into com-
ponent species limits, demography and mode of
speciation. Using the almost complete cyt b gene
(950 bp) and niche modelling approach (MaxEnt
program: Phillips, Anderson & Schapire, 2006), our
aim was to determine the exact geographical limits of
the putative species (lineages) and also to identify the
contact zone of these species. Although our data

retrieved two divergent mtDNA lineages separated by
elevated sequence divergence (as in Taylor et al.,
2009b), the extensive sampling regime allowed us to
identify further subdivision within the previously rec-
ognized species. The genetic data are supplemented
with niche modelling data, both indicating that fol-
lowing the divergence of the two species, speciation
followed different evolutionary trajectories which con-
verge in the Eastern Cape province in the vicinity of
the Alice area.

MATERIAL AND METHODS
SAMPLING

Tail biopsies were taken from 55 live O. irroratus
which were collected in the Western Cape, Eastern
Cape, Free State, KwaZulu-Natal and Mpumalanga
provinces of South Africa (Fig. 1; Table 1). The sam-
pling was supplemented with skin samples from
43 museum specimens obtained from the Durban
Natural Science Museum (DM) (museum accession
numbers provided in Table 1). Furthermore, an addi-
tional four sequences from specimens that were
analysed in previous investigations (GenBank acces-
sion numbers FJ619554.1, FJ619555.1, FJ619556.1,
and FJ619562.1) were included in the analysis.

DNA EXTRACTION, PCR AND DNA SEQUENCING

Total genomic DNA was extracted using a Qiagen
DNEasy kit following the protocol of the manufac-
turer. Cross contamination is commonly associated
with museum material (see Stuart et al., 2006 for use
of museum material); hence a blank DNA extraction
was set up each time DNA was extracted from
museum material. The mitochondrial cyt b gene was
amplified using the universal primers L 14724
(5′-AAAAAGCTTCCATCCAACATCTCAGCATGATGA
AA-3′) (Pääbo & Wilson, 1988; Kocher et al., 1989)
and H 15915 (5’-CTGCAGTCATCTCCGGTTTACAAG
AC-3′) (Irwin, Kocher & Wilson, 1991) to amplify a
953-bp fragment from the fresh material. Museum
material was amplified using primers targeting the
first 400 base pairs of the 5′ end of the cyt b gene
(tRNA-GluA: 5′-TGACTTGAARAACCAYCGTTG-3′
and tRNA-GluJ: 5′-CCCTCAGAATGATATTTGTC
CTCA-3′) (Palumbi et al., 1991). Each PCR reaction
contained 14.9 mL of millipore water, 3.5 mL of 25 mM

MgCl2, 3 mL of 10¥ Mg2+-free buffer, 0.5 mL of a 10 mM

dNTP solution and 0.5 mL (10 mM) of the respective
primer pairs, 0.1 mL of Taq polymerase and 2–4 mL of
template DNA.

All PCR reactions had the following temperature
cycle: 94 °C for 4 min, 94 °C for 30 s, 48 °C for 45 s
and 72 °C for 35 s. The last three steps were repeated
for 40 cycles followed by a final extension of 15 min at
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72 °C. PCR products were separated in 1% agarose
gels, and excised with the aid of a sterile surgical
blade. An Illustra™ (GE Healthcare) commercial kit
was then used to purify the gene fragments from the
agarose gel. An automated sequencer (ABI 3100,
Applied Biosystems) was used to run cycle sequencing
products. To authenticate the sequences obtained
from the museum material all the sequences were
blasted and compared with sequences on GenBank
and aligned with sequences obtained from fresh
material. To ascertain whether a pseudo-gene was
amplified, sequences were checked for stop codons
using EMBROSS/Transec (http://www.ebi.ac.uk/Tools/
emboss/transeq/index.html).

PHYLOGENETIC ANALYSIS

Sequences were edited in Sequence Navigator ver.
1.0.1 (Applied Biosystems, 1994) and MODELTEST
ver. 3.06 was used to estimate the mode of nucleotide
substitution (Posada & Crandall, 1998). Using the
Akaike information criterion (AIC), which optimizes

the number of parameters that describe the data, the
best-fit maximum-likelihood (ML) score was chosen
(Akaike, 1973; Nylander et al., 2004). Subsequently,
phylogenetic relationships were inferred using
maximum parsimony (MP) and neighbour joining
(NJ) as implemented in PAUP*4 ver. beta 10 (Swof-
ford, 2002). The heuristic search option was selected
with tree bisection and reconnection branch swapping
using 1000 random taxon stepwise additions and gaps
were treated as missing characters. Confidence nodes
on the MP and NJ trees were determined with the aid
of bootstrapping (Felsenstein, 1985); bootstrap values
above 75% were considered well supported. Further
analysis was done using Bayesian inference (BI;
MrBayes 3.0b4 for ML; Huelsenbeck & Ronquist,
2001). Ten Monte Carlo Markov chains were run for
five million generations of which 10% were burn-in.
The chains were sampled randomly for a tree every
1000th generation. A consensus tree was then con-
structed from the generated trees using the 50%
majority rule and support for the nodes was esti-
mated by posterior probabilities using the percentage

Figure 1. The geographical distribution of Otomys irroratus samples used in the current study. The numbers in each
circle correspond to the locality in Table 1: 1, Baviaanskloof; 2, Somerset East; 3, Kroomie; 4, Hogsback; 5, Thomas Baines
Nature Reserve; 6, Alice; 7, Groendal Nature Reserve; 8, Grahamstown; 9, Sam Knott Nature Reserve; 10, Port Elizabeth;
11, Stutterheim; 12, Stellenbosch; 13, Porterville; 14, Beaufort West; 15, De Hoop Nature Reserve; 16, Oudtshoorn; 17,
Van Rhynsdorp; 18, Bainskloof; 19, Algeria; 20, Tweede Tol; 21, Gamkaskloof; 22, Swartberg; 23, Prince Albert; 24,
Lemonwood; 25, Kamberg; 26, Karkloof; 27, Loteni Nature Reserve; 28, Bergville; 29, Umgeni valley; 30, Fort Notting-
ham; 31, Mgeni; 32, Theunissen; 33, Bloemfontein; 34, Ficksburg; 35, Kuruman; 36, Rietvlei; 37, Lydenburg. The localities
of sequences obtained from GenBank are listed in Table 1 (Tygerkloof, KwaZulu Natal; Springs, Gauteng provinces in
South Africa; Chingamwe, in Zimbabwe).
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of time a node was recovered. Nodes with posterior
probabilities (pP) < 0.95 were considered poorly sup-
ported. Two species of Otomys, O. laminatus and
O. karoensis, were used as outgroups as they com-
prise a monophyletic group which forms a sister
group to O. irroratus (Taylor, Denys & Mukerjee,
2004).

MOLECULAR CLOCK

To date cladogenic events within O. irroratus, we used
fossil calibration points in conjunction with our DNA
sequence data. Fossil data indicate that the family
Otomyinae is approximately five million years old
(Pocock, 1976; Avery, 1991; Jansa, Barker & Heaney,
2006), while the oldest known fossil of Otomys is
dated at approximately 3.1 Ma (Sénégas & Avery,
1998; Sénégas, 2001; Denys, 2003; Taylor et al., 2004;
Matthews, Denys & Parkington, 2005; Hopley,
Latham & Marshall, 2006). Using BEAST (ver. 1.4.8)
and three fossil calibration dates (Mus/Rattus:
~12 Ma; Otomyinae: ~5 Ma, and Otomys: ~3.1 Ma)
the divergence date between the major clades that
were retrieved was estimated using the Bayesian
approach (with a length of 20 million generations and
a burn-in of 200 000) and the nucleotide evolution
model sampled every 10 000 iterations (Drummond &
Rambaut, 2006). The Bayesian approach was also
used to investigate the confidence at the nodes at
95% pP.

POPULATION GENETICS ANALYSIS

A haplotype network was constructed using the
method of Templeton, Crandall & Sing (1992) at
the 95% confidence interval, using TCS ver. 1.13
(Clement, Posada & Crandall, 2001) and the network
subjected to nested clade analysis (NCA) (Templeton,
Routman & Phillips, 1995). NCA was used to deter-
mine whether historical events versus current gene
flow barriers are operating on the current population
genetic structure (Templeton et al., 1995; Templeton,
1998, 2004). The haplotype network was nested and
analysed using GeoDIS ver. 2.0 (Posada, Crandall &
Templeton, 2000).

The population genetic structure was analysed
using AMOVA and the clades obtained from the phy-
logenetic analysis were used for defining groups a
priori (Excoffier, Smouse & Quattro, 1992). Popula-
tion subdivision was estimated using F-statistics
(Excoffier et al., 1992; Frankham, Ballou & Briscoe,
2003; Excoffier, Laval & Schneider, 2005). Population
demographics of O. irroratus were also evaluated
using mismatch analysis (Rogers & Harpending,
1992; Harpending 1994). Tests for goodness-of-fit sta-
tistics based on the sum of square deviations for a

model of sudden expansion was determined in Arle-
quin version 3.11 (Excoffier et al., 2005). After range
expansion or contraction is established, Fu’s FS test
was used to test whether the populations are in
equilibrium (Fu, 1997).

Neutrality tests were then done to ensure that the
pattern of sequence polymorphism observed in the
populations conformed to the neutral model. Tajima’s
D-value was also calculated to evaluate whether the
populations are in stasis or expanding using Arlequin
ver. 3.11 (Excoffier et al., 2005). After an episode of
population growth, coalescence theory predicts that
external branches are elongated and there is an
excess of low-frequency mutations compared with the
neutral model (Petit, Balloux & Excoffier, 2000). Tests
for goodness-of-fit and Fu’s FS were generated in
Arlequin ver. 3.11 using parametric bootstrapping
with 10 000 replicates (Felsenstein, 1985).

NICHE MODELLING ANALYSIS

Many problems are inherent in using presence-only
data (such as museum records) for estimating the
predicted distributions of species, but recent models
have overcome this limitation. For example, the
MaxEnt (Maximum Entropy) method (Phillips et al.,
2006), which employs a general machine learning
algorithm, has been shown to perform well with
presence-only data, and with sample sizes as low as
five, 10 or 25 occurrences, and to outperform alter-
native ‘climatic envelope’ models such as GARP and
BIOCLIM (for recent discussions which strongly
endorse MaxEnt see Elith et al., 2006; Hernandez
et al., 2006). Based on 41 georeferenced distribution
records (precision of 0.001 degrees), which are rea-
sonably evenly spread throughout the latitudinal and
longitudinal range of the species (Fig. 1), we used
MaxEnt version 3.0 beta to estimate predicted distri-
butions (approximated ecological niches) of the two
genetically defined clades of O. irroratus sensu lato
defined by this study, Clade A (N = 21 localities) and
Clade B (N = 20 localities). We used nine continuous
environmental variables (WORLDCLIM version 1.4:
http://biogeo.berkeley.edu/worldclim/; Hijmans et al.,
2005) reflecting means, extremes and seasonal varia-
tion of temperature and precipitation: Bio1 (mean
annual temperature), Bio4 (temperature seasonality),
Bio5 (maximum temperature of warmest month),
Bio6 (minimum temperature of coldest month), Bio7
(annual range of temperature), Bio12 (annual precipi-
tation), Bio13 (precipitation of wettest month), Bio14
(precipitation of driest month), and Bio15 (preci-
pitation seasonality). Altitude was not included as
preliminary correlation analysis showed it to be
significantly correlated (N = 39, P < 0.05) with all
other climatic variables and particularly with Bio6
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(minimum temperature of coldest month) (r = -0.82,
P << 0.0001) (data not shown but available from
P.J.T.). The environmental data were set to a spatial
grid resolution of 2.5 arc minutes. The MaxEnt model
was run with all distribution records (100% training),
the regularization multiplier was set to 2.0,
maximum number of iterations was set to 1000, con-
vergence threshold was set to 1 ¥ 10-5, ‘auto-features’
was selected, and output format was set to logistic.
Model performance was assessed with proportion of
presences correctly classified (sensitivity), proportion
of absences correctly classified (specificity), and dis-
crimination ability [area under the curve (AUC)
of a receiver operating characteristic plot of sensi-
tivity versus 1 – specificity). As MaxEnt produces a
continuous probability (ranging from 0 to 1.0), we
transformed the continuous model output to a map
representing probabilities. The percentage contri-
bution of each explanatory variable to model per-
formance was evaluated; furthermore, a jackknife
procedure implemented in MaxEnt was used, where
variables are successively omitted and then used in
isolation to measure their relative as well as absolute
contribution to the model.

RESULTS
PHYLOGENETIC DATA ANALYSIS

A 953-bp fragment of the cyt b locus was obtained
from the fresh material (N = 55) while a 400-bp
fragment was obtained from 43 of the 75 museum
specimens (Table 1). Altogether, 98 specimens from 38
localities were successfully amplified, sequenced
and deposited in GenBank (accession numbers:
HM363654–HM363751). The four sequences that
were downloaded from GenBank were included in the
analysis, resulting in a total of N = 102 specimens,
which resolved into 69 haplotypes (see Supporting
Information, Table S1).

The partial fragment of the cyt b gene (400 bp)
obtained from museum material (missing characters
were treated as absent base pairs for the museum
material) and the larger fragment (953 bp) were
first analysed separately to check whether the two
datasets were comparable. As identical patterns were
obtained the sequences were combined into a single
data matrix. MODELTEST selected the HKY + I + G
as the model of substitution using the AIC criteria
(–lnL = 3405.58; AIC = 6823.16) (Hasegawa, Kishino
& Yano, 1985). The proportion of invariable sites
(I) was 0.56 and the gamma distribution shape
parameter (k) was 0.68 for the among-site variation.
The substitution model’s rate matrix was R(a)
[A–C] = R(c) [A–T] = R(d) [C–G) = R(f) [G–T] = 1.00
while R(b) [A–G] = 10.93 and R(e) [C–T] = 13.32;

similar values were retrieved for the two datasets
(the 400- and 953-bp fragments) and hence only the
combined dataset is discussed. The base frequencies
for the combined dataset were A = 31.43%, C =
30.00%, G = 11.50% and T = 27.04%. No significant
variation in base composition was evident between
sequences as shown by a chi-squared test (c2 = 15.95,
d.f. = 1, P = 0.01). Similar results were found in cyt b
studies for other rodents (Michaux et al., 2004;
Mitsainas et al., 2009). For MP, 157 characters were
parsimony informative, and retrieved 100 equally
parsimonious tress with a length of 363 steps
(CI = 0.60, RI = 0.92) from which a strict consensus
was constructed.

The tree topologies retrieved for MP, NJ and BI
were nearly identical with regard to the major
clades retrieved and hence only the MP tree topol-
ogy is discussed (Fig. 2). The monophyly of O. ir-
roratus was well supported (100%/100%/0.99 pP),
and two parapatrically distributed clades were
retrieved (100%/99%/1.00 pP): Clade A occurs in the
south-western parts of South Africa (encompassing
the Western and Eastern Cape provinces) (96%/
100%/0.96 pP) while Clade B occurs in the north-
eastern parts of South Africa (Eastern Cape,
Free State, KwaZulu-Natal, Mpumalanga, Gauteng
and Northern Cape provinces) (79%/71%/0.96 pP)
(Fig. 2). These two clades are separated by 7.0%
average sequence divergence.

Within Clade A two groups are evident, the first
comprising 13 specimens which are exclusive to the
Eastern Cape province (100%/67/0.99 pP), and the
second group having 39 specimens which occur in
the Western and Eastern Cape provinces (100%/
< 50%/0.96 pP (Fig. 2). Clade A is characterized by
low sequence divergences between specimens (0.2–
1.91%). Similarly, Clade B is subdivided into two
groups (subclades B1 and B2) that are separated by
4.8% (Fig. 2). Subclade B1 comprises ten individuals
derived from a wide geographical range in the north-
ern parts of South Africa (Mpumalanga, Northern
Cape, KwaZulu-Natal and Free State provinces)
(77%/75%/1.0 pP). Subclade B2 has 33 specimens
predominantly distributed in the southeastern half
of South Africa (Eastern Cape, KwaZulu-Natal)
(100%/86%/0.96 pP). Specimens from Hogsback in the
Eastern Cape clustered within the two subgroups
comprising Cade B; similarly specimens from Fort
Nottingham (KwaZulu-Natal) were present in the two
subgroups of Clade B. In turn Clades A and B appear
to have an area of sympatry at Alice in the Eastern
Cape province as specimens (N = 6) from this locality
grouped in both Clades A and B. Divergence time
estimates dated the split between the two major
clades at 1.1 Ma (95% confidence intervals: 0.4338–
2.7652 Ma), suggesting a late Pliocene/Pleistocene
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Figure 2. The maximum-parsimony phylogram for Otomys irroratus for the cyt b gene (N = 102) based on 69 haplotypes.
Statistically well-supported clades have posterior probabilities which are > 0.95 pP (above nodes), while bootstrap values
above 95% are indicated below supported nodes (maximum-parsimony values on the left and neighbour-joining values on
the right). The two major clades A and B that were retrieved are indicated by the vertical lines.
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cladogenesis. Divergence within Clade A is dated at
0.62 Ma (0.11330–0.90300 Ma) and for clade B it is
dated at 0.66 Ma (0.1349–1.1906 Ma).

POPULATION GENETICS

The AMOVA retrieved a FST (among group variation)
of 77.10% d.f. = 36, sum of squares 408.71, variance
component = 1.38) and the two major clades are sepa-
rated by significant pairwise FST = 0.87 (P < 0.01).
Within the two clades some genetic substructure was
found with FST values ranging from 0.40 (P < 0.01) in
Clade A to 0.44 (P < 0.01) in Clade B. The Tajima’s
D-value over all of the sampled localities was 0.52,
suggesting balancing selection or a decrease in the
population size, while a P-value of 0.83 was reported
by Fu’s FS test for all the sampled localities, indicat-
ing that the entire population is in stasis. A bell-
shaped (unimodal) distribution of the frequency of the
pairwise differences was found in Clade A, which is
indicative of a recently expanded population (support-
ing Fig. S1A). In contrast, Clade B has a multimodal
pairwise difference distribution of a stable population
(Fig. S1B).

GENETIC DIVERSITY STATISTICS

The haplotype diversity for the combined dataset was
high (h = 0.99) with a low nucleotide diversity of
p = 0.045 (pairwise nucleotide differences k = 17.165).
The reduced data had comparable indices: h = 0.95,
p = 0.037, k = 13.957. As two main clades were
retrieved, we calculated genetic indices for each. Hap-
lotype diversity for Clade A was high (h = 0.898) but
was identical to the two subclades A1 (h = 0.882) and
A2 (h = 0.878) and the nucleotide diversity very low,
p = 0.0006 (p = 0.004 for subClade A1 and 0.0046 for
A2; supporting Table S3). Clade B similarly showed a
high haplotype diversity (h = 0.92; Clade B1 h = 0.86,
Clade B2 h = 0.8) yet a higher nucleotide diversity
(p = 0.046) (pairwise nucleotide differences k = 18.87
and variable haplotype diversity = 0.00055). The
results emanating from this analysis indicate that
Clade A experienced a recent population expansion
while Clade B seems to be in stasis and older
than Clade A, as indicated by the higher nucleotide
diversity.

NESTED CLADE ANALYSIS

Sixty-nine haplotypes were retrieved from 102 speci-
mens and these were grouped into a single network
at the 95% confidence level (supporting Fig. S2,
Table S1). The two major clades which were revealed
in the phylogeny were also evident from the haplo-
type network. The number of haplotypes (Nh) per

locality ranged from one to four and most of the
haplotypes were separated from each other by one to
three mutational steps. Two genetically distinct
groups are apparent from this network, as indicated
by the high number of mutational steps (18 in total)
separating them. The two subgroups in Clade B are
separated by eight mutational steps (supporting
Fig. S2).

Forty-five one-step clades, 16 two-step clades, six
three-step clades and two four-step clades were
evident from nested clade analysis. GeoDis (ver. 2.0)
also retrieved two divergent groups which correspond
to the two lineages obtained using phylogenetic
analysis (clades 4-1 and 4-2). Clade A occurs in the
south western parts of South Africa (4-2), while Clade
B occurs in the north-eastern parts of South Africa.
The analysis indicated that eight of the clades had a
statistically significant relationship between nested
clades and geography (supporting Table S2). Clade
A-15 was the only clade on the first nesting level to
have a statistically significant P-value. Inadequate
geographical sampling, however, prevented any con-
clusive interpretation. Three clades on the second
nesting level showed statistically significant P-values
(2-6, 2-8 and 2-15). For Clade B-6, however, inad-
equate sampling precluded any robust conclusion,
and isolation by distance as a result of short-distance
dispersal vs. long-distance dispersal could not be con-
firmed. For Clade B-8 restricted gene flow with iso-
lation by distance led to the current genetic structure.
This haplotype occurs in the Oudtshoorn region, in
the little Karoo of the Western Cape province. The
analysis retrieved an inconclusive outcome for Clade
B-15. On the third nesting level two clades had sta-
tistical support (3-2 and 3-5). Clade 3-2 showed
restricted gene flow with some long-distance dis-
persal; clade 3-2 includes most of the Western Cape
province samples (Clade A). Clade 3–5 has haplotypes
which originate from Hogsback in the Eastern Cape
province, and restricted gene flow with isolation by
distance is implicated as the driving force leading to
the contemporary genetic structure in this clade. Only
one clade on the fourth level had sufficient statistical
support (4-1); however, an inconclusive outcome
was retrieved from the inference key for this clade.
The total cladogram showed that allopatric fragmen-
tation led to the current genetic structure within
O. irroratus.

NICHE MODELLING ANALYSIS

The MaxEnt algorithm converged after 240 (Clade A)
and 300 (Clade B) iterations with a regularized train-
ing gain of 1.521 (Clade A) and 1.420 (Clade B).
Modelled potential distributions (MaxEnt) of Clades 1
and 2 are shown in Figure 3A, B. Localities based on
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museum collecting records are shown as filled circles.
Shading represents ranges of probability of occur-
rence (i.e. habitat suitability) with darker shading
indicating higher suitability. Model performance as

assessed by the AUC was very high (0.940 and 0.944
for Clades 1 and 2, respectively), indicating efficient
classification of suitable versus unsuitable habitats.
For both clades, the environmental variable which

Figure 3. Modelled potential distributions (MaxEnt) of genetically defined Clades A (A) and B (B) of Otomys irroratus
based on 41 records of occurrence from southern Africa. Shading represents ranges of probability of occurrence (i.e.habitat
suitability). (C) Distribution of one bioclimatic variable (maximum precipitation of driest month: Bioclim 14) in southern
Africa in relation to sampled localities of Clade A (closed circles) and Clade B (closed squares).
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provided the greatest relative contribution to the
MaxEnt model was precipitation of the driest month
(Bio14) (variable contribution was 73 and 49% for
Clades A and B, respectively). Figure 3C shows the
distribution of this variable in southern Africa, with
the sampled localities of the two clades superimposed;
localities assigned to Clade A occupy regions having
relatively high precipitation in the driest month
whilst Clade B localities from the high plateau of
South Africa and eastern highlands of Zimbabwe are
characterized by a more seasonal rainfall regime in
which the driest month receives relative low precipi-
tation. The environmental variables with the highest
explanatory power (gain) when used in isolation
were precipitation seasonality (Bio15; Clade A) and
maximum temperature of warmest month (Bio5;
Clade B). The environmental variables that decreased
the gain the most in the overall model when omitted
(and therefore had the most information that was not
present in the other variables) were Bio14 (precipita-
tion of the driest month) (Clade A) and Bio12 (annual
precipitation) (Clade B). The MaxEnt models (Fig. 3A,
B) predicted distributions for the two clades in south-
ern Africa that were largely non-overlapping (apart
from areas including the coastal zone of KwaZulu-
Natal and mountains of the Cape Fold Mountains and
the Great Escarpment), with Clade A mostly associ-
ated with the Fynbos and Thicket Biomes associated
with coastal locations in the southern and eastern
Cape and Clade B mostly associated with the higher-
altitude Grassland Biome of South Africa and eastern
highlands of Zimbabwe.

DISCUSSION

The topology inferred from the cyt b mtDNA sequence
data clearly demonstrates the presence of two mono-
phyletic lineages each containing two sub-clades
within Otomys irroratus. These two major clades are
characterized by elevated sequence divergence values
and separated by chromosomal differences (data not
shown). Clade A includes the distribution of the type
locality of O. irroratus (Uitenhage, Eastern Cape;
Roberts, 1929) while Clade B represents a novel
lineage, referred to as O. auratus Wroughton (1906)
by Taylor et al. (2009b). Clades A and B are sympatric
at Alice in the Eastern Cape, and are genetically
distinct, as evident from the general absence of
shared haplotypes. Cladogenesis within O. irroratus
coincides with a Pliocene/Pleistocene divergence
event. Furthermore, mismatch distributions indicate
that Clade A underwent a recent expansion while
Clade B has a mismatch distribution indicative of a
stable population, suggesting that the two groups
have different evolutionary histories. Allopatric frag-
mentation was inferred from NCA, suggesting that

historical events led to the current genetic structure
within O. irroratus. Ecological differentiation between
the two clades was demonstrated by the MaxEnt
models, associated mainly with environmental vari-
ables relating to the more seasonally equitable pre-
cipitation regime of the Fynbos and Thicket Biomes
compared with the more pronounced precipitation
seasonality experienced by the Grassland Biome.

POPULATION DEMOGRAPHY, BIOGEOGRAPHY

The Eastern Cape and the Western Cape provinces
consist of heterogeneous biomes containing forests
(Afrotemperate forest and Scarp forests), fynbos and
grasslands (which comprise the preferred habitat of
O. irroratus). Lawes et al. (2007) found that the two
major forest types have undergone expansion and
contraction cycles since the Last Glacial Maximum.
In particular, these forests contracted to isolated
refugia in KwaZulu-Natal and the Eastern Cape and
expanded when moist conditions prevailed again
(Eeley, Lawes & Piper, 1999; Lawes et al., 2007). The
expansion and the retreat of the forests would have
also impacted the grassland biome. This in turn
would also affect demographics of species occurring in
these areas such as O. irroratus, which would then be
evident in population genetic structures. The mis-
match analysis supports this by showing a recent
expansion for Clade A, which is distributed in the
south-western parts of South Africa. The recent
expansion could have been due to favourable climatic
conditions which prevailed during the Pleistocene,
which enabled the expansion of fynbos, northwards
up the west coast of South Africa, thus enabling
O. irroratus to expand in this direction (Moreau,
1962). Our molecular dating indicates that the expan-
sion occurred almost at the same time as the forest
expansions, which are dated at 18 000 years BP
(Lawes et al., 2007). In contrast, Clade B shows a
mismatch distribution of a stable population and pro-
nounced substructure at the sequence level. The mul-
timodal pattern in Clade B reflects the high haplotype
diversity and elevated sequence divergences separat-
ing these haplotypes. According to Lawes et al. (2007),
the forest contraction and expansion regime in the
KwaZulu-Natal area is much older than in the
southern–western seaboard. The estimated diver-
gence time between the two major clades found in
O. irroratus is 1.1 Ma, which is in line with the
climate changes that took place since the late
Pliocene between 2.9 and 0.8 Ma (Ellery, Scholes &
Mentis, 1991; de Menocal, 2004; Lawes et al., 2007).

The phylogeographical pattern observed in this
investigation is similarly retrieved in other co-
distributed taxa. These include the four-striped
fieldmouse Rhabdomys pumilio (Rambau et al., 2003),
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which is a generalist species also inhabiting grass-
lands, and the forest shrew Myosorex varius (Willows-
Munro & Matthee, 2009), which is a montane
grassland specialist. In each of these species multiple
lineages were retrieved with all of them sharing the
phylogeographical break in the Eastern Cape. The
area of sympatry (Alice) between these two putative
species is in the vicinity of a known vegetation cross-
over zone between the fynbos and grassland biomes in
southern Africa (Mucina & Rutherford, 2006). There-
fore, the distribution of the two main clades closely
follows the biomes in the southern parts of South
Africa. The divergent lineages within O. irroratus are
therefore not unique with respect to other taxa.

CAPE FLORISTIC REGION

Part of our sampling included the Cape Floristic
Region especially across the Cape Fold Mountains
(CFM) which acts as a genetic barrier to many species
(Tolley, Chase & Forest, 2008, 2009; Swart, Tolley &
Matthee, 2009). Interestingly, this barrier is not
reflected in the specimens that we sampled on either
side of the mountains comprising the CFM. For
instance, specimens from Porterville, Van Rhynsdorp,
and Algeria, which occur north of the Hottentots
Holland range, and specimens from Stellenbosch and
De Hoop, which are on the south of the Langeberg
mountains, all occur in the same clade and are sepa-
rated by sequence divergences averaging 0.2%. Our
NCA indicates that long-distance dispersal could have
resulted in gene flow between distant populations.
Clearly, high topography may not be a dispersal
barrier to O. irroratus as it is known that they occur
at altitudes up to 2000 m above sea level in the
Drakensburg mountain range (Lynch & Watson,
1992). Furthermore, Taylor et al. (2009b) argue that
during unfavourable periods (such as dry conditions)
O. irroratus would seek refuge in highland areas and
expand when conditions are permissible again. Apart
from the dry conditions, the grassland habitat of
O. irroratus may have been able to expand during
higher temperature cycles as woodlands would
contract during this time (Ellery et al., 1991; Lawes
et al., 2007). The lack of genetic structure
within Clade A could therefore be an artefact of this
process.

SPECIES BOUNDARIES

Since the inception of the biological species concept
(Mayr, 1963), a plethora of species concepts have been
developed (Cracraft, 1989, 1992; Mayden, 1997; Sites
& Marshall, 2003). More recently, there is a tendency
to infer species distinction when genetically divergent
lineages are detected within putatitive species

(Rambau et al., 2003; Daniels et al., 2007; Daniels,
Heideman & Hendricks, 2009), particularly when cyt
b sequence divergence exceeds 5% in rodent taxa
(Bradley & Baker, 2001; Baker & Bradley, 2006). In
doing so, the general approach appears to apply the
genetic species concept, which has several limitations
when applied in a phylogenetic framework (Bond &
Sierwald, 2002; Monaghan et al., 2009). The alterna-
tive approach (most acceptable in our view) is to use
an integrated approach wherein using multiple diag-
nostic characters (including genetic characters) is
advocated as proposed by Crandall et al. (2000) and
Bond & Stockman (2008).

In the case of O. irroratus, the elevated mitochon-
drial sequence divergence separating the two major
clades is supported by several datasets. In the first
instance, these lineages inhabit geographical areas
characterized by different biomes. Clade A occurs in
the CFM and Albany thicket biome and Clade B
occurs in the northern grassland biome. This is
underslined by divergent ecological parameters which
were described using niche modelling predictions.
Altogether, our mitochondrial data derived from a
wide geographical range and distribution predictions
derived from niche modelling provide strong grounds
for two species within O. irroratus, which were pro-
visionally recognized by Taylor et al. (2009b) as O. ir-
roratus (Clade A) and O. auratus (Clade B).

This study showed the presence of a potential
contact zone at Alice in the Eastern Cape, although
more sampling is required to establish the size of the
contact zone. Furthermore, additional nuclear geno-
typing would help determine whether gene flow
occurs across the contact zone. The phenotypic and
pelage conservatism displayed in O. irroratus adds to
the growing number of cryptic species occurring in the
southern African subregion (Denys & Jeager, 1986;
Britton-Davidian et al., 1995; Taylor et al., 1995;
Rambau et al., 2003; Mullin, Pillay & Taylor, 2004;
Willows-Munro & Matthee, 2009). Considering the
results presented here, biodiversity indices for south-
ern Africa may currently grossly underestimate the
number of taxa present as many widespread taxa
characterized by morphological conservatism may
have diverged at the molecular level. This clearly
demonstrates the importance of molecular approaches
when investigating population differences (and demo-
graphics) within rodents, particularly in taxa that do
not display morphological diagnostic characters.
Although museum material is renowned for its diffi-
culty to amplify, this investigation clearly underlines
the utility of museum material (and museum collec-
tions) in addressing species demarcations between
taxa (for instance see Goodman et al., 2006; Smit
et al., 2007), and certainly helped us to comprehen-
sively sample (without further invasive sampling)
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throughout the major parts of the distribution of
O. irroratus.
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