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Feasibility and uncertainty of using conceptual rainfall-

runoff models in design flood estimation

Qiang Zeng, Hua Chen, Chong-Yu Xu, Meng-Xuan Jie and Yu-Kun Hou
ABSTRACT
Hydrological models are developed for different purposes including flood forecasting, design flood

estimation, water resources assessment, and impact study of climate change and land use change,

etc. In this study, applicability and uncertainty of two deterministic lumped models, the Xinanjiang

(XAJ) model and the Hydrologiska Byråns Vattenbalansavdelning (HBV) model, in design flood

estimation are evaluated in a data rich catchment in southern China. Uncertainties of the estimated

design flood caused by model equifinality and calibration data period are then assessed using the

generalized likelihood uncertainty estimation (GLUE) framework. The results show that: (1) the XAJ

model is likely to overestimate the design flood while HBV model underestimates the design flood; (2)

the model parameter equifinality has significant impact on the design flood estimation results; (3) with

the same length of calibration period, the results of design flood estimation are significantly influenced

by which period of the data is used for model calibration; and (4) 15–20 years of calibration data are

suggested to be necessary and sufficient for calibrating the two models in the study area.
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INTRODUCTION
Precise determination of designflood in hydrologic design and

risk assessment of hydraulic engineering is of significant

importance. In designing hydraulic schemes, the estimation

of the design flood value is usually accomplished through

the calculation of flood frequency by utilizing long-term his-

torical hydrological data, whose length significantly

influences the estimation performance. However, due to the

lack of observed hydrological data of sufficient length and

quality in many basins, it is hard to achieve the required

level of consistency, homogeneity and stationarity of the esti-

mated results. Under these circumstances, rainfall-runoff

models can be used to simulate the required runoff series for

frequency analysis. It is well known that rainfall-runoff

models are widely used in flood forecasting (e.g. Refsgaard

et al. ; Mwale et al. ), water resources assessment

(e.g. Xu et al. ; Kizza et al. ; Hailegeorgis & Alfredsen

), regional and globalwater balance calculation (e.g. Arnell
; Li et al. a, b), impacts of climate change and land

use change assessment (e.g. Bastola et al. ; Lawrence &

Haddeland ; Gosling ; McIntyre et al. ; Emam

et al. ; Singh et al. ; Yan et al. ) and streamflow

simulation in ungauged catchments (e.g. Xu, ; McIntyre

et al. ; Murray & Bloschl ; Mwale et al. ). Among

these applicationsmost emphasis has been put onflood control

and water resources management (Pechlivanidis et al. ),

while only a few applications to estimate design flood have

been reported and discussed (Boughton & Droop ;

Ngongondo et al. ). As precipitation, potential evapotran-

spiration and temperature are more widely available with

longer records than runoff observations (Blazkova & Beven

), they are used as the main inputs to rainfall-runoff

models for runoff simulations to estimate the design floods.

The use of rainfall-runoff models for design flood esti-

mation can be classified into two categories (Boughton &
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Droop ). One is the event-based simulation, in which

rainfall-runoff models are fed by the design rainfall event

and the assumed antecedent conditions of the catchment.

Another one is the continuous simulation, in which rain-

fall-runoff models are fed by the historical or simulated

rainfall to make a continuous runoff simulation, from

which the design flood estimation can be drawn. The

event-based simulation approach often assumes the T-year

design rainfall event will generate the T-year flood event

(Bradley & Potter ; Smithers et al. ). However,

this pragmatic assumption clearly does not give good rep-

resentation of the complex relationship between the design

rainfall and design flood (Brigode et al. ). In the event-

based simulation approach the input design rainfall can be

the one derived from historical records or from stochastic

rainfall event simulations. Saghafian et al. () keeps the

idea that the simulated runoff values by rainfall-runoff

models from precisely observed rainfall may suffer less

uncertainty than the runoff transformed from the measured

water level through water level-discharge relation curves.

He applied this event-based method to the Tangrah water-

shed located in north-eastern Iran to analyse the flood

frequency, and the results showed that the design flood

derived from simulated flood peaks were less than that

from observations (Saghafian et al. ). With the fast

development of computing facilities, continuous simulation

has been used for the design flood estimation (Beven ;

Calver & Lamb ; Lamb ; Suman & Bhattacharya

). Calver & Lamb () performed the continuous simu-

lation to 10 UK catchments by using the historical rainfall

records as the input of two models, the probability-distribu-

ted model and the time-area topographic extension model,

for flood frequency analysis. Lamb () discussed the cali-

bration method of rainfall-runoff models used for design

flood estimation by continuous simulation. The continuous

simulation approach can also be used for data limited or

ungagged sites if good correlations can be made between

the model parameters and the characteristics of the river

basin (Saliha et al. ). Discussions and applications of

the continuous simulation in ungagged sites are presented

in the works by Blazkova & Beven () and Smithers

et al. ().

The merits and drawbacks of these two design flood esti-

mation approaches have been analysed by many researchers
om https://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
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(Lamb ; Boughton & Droop ). The continuous

runoff simulation approach is regarded to be more promis-

ing where the problem of antecedent condition is avoided

(Calver & Lamb ), while in the event-based approach

assumptions about the antecedent condition must be

made, which will cause uncertainty.

The existence of the four important sources of uncertain-

ties in hydrological modelling, i.e. uncertainties in input data,

uncertainties in output data used for calibration, uncertain-

ties in model parameters and uncertainties in model

structure (Refsgaard & Storm ), means the modelling

results are uncertain and the equifinality problem has been

universally found in hydrological models. Uncertainty of

rainfall-runoff models for flood forecasting has been dis-

cussed in many studies (Cameron et al. ; Beven &

Freer ; Blazkova & Beven ; Li et al. , ;

Wang et al. ; Tian et al. ), however uncertainty that

is inherent in the continuous simulation for design flood esti-

mation has not drawn much attention in the hydrological

literature. Brigode et al. () used the bootstrap method

to analyse the uncertainties in a semi-continuous design

flood estimation method, the SCHADEX extreme flood esti-

mation method, which was developed by Paquet et al. ().

The results showed that the variability of observed rainfall

and the difference of the rainfall-runoff model calibration

periods had significant impact on the design flood

estimation.

In recent years, many researchers have focused on the

coupling of stochastic rainfall models and rainfall-runoff

models to give a long runoff simulation in order to reduce

the uncertainty caused by the extrapolation of the fitted dis-

tribution curve of observed peak discharges (Boughton &

Hill ; Cameron et al. ; Blazkova & Beven ).

Cameron et al. () used TOPMODEL coupled with a sto-

chastic rainfall generator to estimate 1,000-year flood in the

Wye catchment in UK and used the generalized likelihood

uncertainty estimation (GLUE) framework to analyse the

uncertainty of the continuous simulation approach. The

above studies indicate that compared with the large

amount of studies conducted on using hydrological models

for flood forecasting, water resources assessment, and

impact studies of climate and land use changes, more

effort needs to be directed to the usefulness and uncertainty

of using hydrological models for design flood study.
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The objectives of this paper are: (i) to investigate the appli-

cability of lumped conceptual deterministic hydrological

models indesignflood estimation; and (ii) to analyse the uncer-

tainties that are inherent in the hydrological model-design

floodmodel approach. To achieve these objectives, the follow-

ing tasks are performed: (1) the historical rainfall data are used

to run the rainfall-runoff models (Xinanjiang (XAJ) model and

HydrologiskaByrånsVattenbalansavdelning (HBV)model) to

simulate runoff data with the same length of observed runoff

data; (2) design flood estimations derived from runoff simu-

lations and runoff observations are compared to analyse the

feasibility of using runoff produced by hydrological models

to estimate design flood; and (3) to evaluate the uncertainty

caused by model equifinality by using the GLUE method,

and the uncertainty induced by the difference of model cali-

bration periods by using different sub-records of runoff

observations to calibrate hydrological models.
DATA AND METHODS

Study area and data

The study was conducted in Xiangjiang basin, a tributary

basin of the Yangtze River, which is located between 24–

29 WN and 110 W300–114 WE, central-south China with a total

area of 94,660 km2 and total river length of 856 km. Moun-

tainous landscapes are found in the east, south, and west of

the basin. Its northern part is made up of plains and hills.

Xiangjiang River originates from the southern mountainous

region and runs to the north plains, and finally inlets into the

Dongting Lake. The climate of this basin is controlled by the

Mongolia high pressure system in winter and influenced by

southeast monsoon in summer, which results in the inhomo-

geneous spatial and temporal distribution of precipitation.

The mean annual precipitation is 1,450 mm, of which 60–

70% occurs in the rainy season from April to September.

The annual mean temperature is about 17 WC. The mean

temperature of the coldest month (January) is about 4 WC.

The study area is a sub-catchment of Xiangjiang basin with

a drainage area of 52,150 km2. The boundary of the study

area is shown in Figure 1. It is located in the upper part of

Xiangjiang basin with a control runoff station, Hengyang

station, at the centre of Xiangjiang basin.
s://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
Forty-one years of daily hydro-meteorological data (from

1965 to 2005), including precipitation, pan evaporation and

observed runoff, are used in this study. Among them, the

precipitation data come from 97 precipitation stations, and

the evaporation data come from 12 evaporation stations.

The distribution of these stations is shown in Figure 1. The

quality of these data is controlled by the Hydrology and

Water Resources Bureau of Hunan Province, China. Many

other studies (Xu et al. , a, b) have used these

data for various research purposes.

Xinanjiang model

The Xinanjiang model was developed in the 1970s (Zhao

et al. ). The main characteristic of this deterministic

lumped model is the concept of runoff formation on

repletion of storage, which means that runoff is not gener-

ated until the soil moisture content reaches filled capacity.

This characteristic guarantees good performance of this

model in continuous hydrological simulation in humid and

semi-humid regions. The XAJ model has been successfully

and widely used in China and many other countries for

hydrological forecasting and flow simulations (Zhao ;

Zhao et al. ; Li et al. a, b). The flowchart of

this deterministic lumped model is shown in Figure 2. Sym-

bols inside the boxes of Figure 2 are variables including

model inputs, model outputs and state variables. The

inputs to the model include daily precipitation, P, and

measured pan evaporation, EM. The outputs are the simu-

lated runoff, Qsim, of the whole basin and the actual

evapotranspiration, E, which contains three components,

upper soil layer evaporation (EU), lower soil layer evapor-

ation (EL), and deep soil layer evaporation (ED). Symbols

outside the boxes of Figure 2 are parameters of this model

and their explanations are listed in Table 1.

In the XAJ model, the catchment is represented by a

stack of horizontal soil layers with total water storage

capacity of WM. They are the upper soil layer, the lower

soil layer, and the deep soil layer with certain water storage

capacity, UM, LM, and DM, respectively. The potential eva-

potranspiration rate (EP) is derived by the product of the

measured pan evaporation and the model parameter KE.

Water stored in the upper layer is evaporated first with a

rate of EU. If it is not able to meet the remaining



Figure 2 | Flowchart of the XAJ model.

Figure 1 | Distribution diagram of runoff station, evaporation station and precipitation station of Xiangjiang basin.
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evaporation capacity (EP-P), evaporation from the lower

layer occurs at the rate of the remaining evaporation

capacity (EP-P-EU) multiplied by the ratio between the
om https://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
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lower layer water storage and its water storage capacity

when this ratio is larger than parameter C. Otherwise the

whole water stored in the lower layer is evaporated, and



Table 1 | Parameters of XAJ model

Number Parameter Explanation Range Unit

1 KE Ratio of potential evapotranspiration to pan evaporation 0.5–1.5 –

2 WM Areal mean tension water storage capacity – mm

3 UM Upper layer tension water storage capacity – mm

4 LM Lower layer tension water storage capacity – mm

5 B Tension water distribution index – –

6 IMP Impermeable coefficient – –

7 SM Areal mean free water storage capacity 0–100 mm

8 EX Free water distribution index – –

9 KI Out flow coefficient of free water storage to interflow – –

10 KG Out flow coefficient of free water storage to groundwater flow 0.1–0.7 –

11 C Deep layer evapotranspiration coefficient – –

12 CI Interflow recession coefficient 0.5–1.0 –

13 CG Groundwater recession coefficient 0.5–1.0 –

14 n Parameter of Nash unit hydrograph – –

15 NK Parameter of Nash unit hydrograph 2.0–3.0 –
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the evaporation from the deep layer occurs at the rate of the

remaining evaporation capacity (EP-P-EU) multiplied by

parameter C when water stored in the deep layer is sufficient

enough or else all the water in deep layer is evaporated.

When the precipitation is larger than the potential evapo-

transpiration, runoff is generated in those areas whose soil

water content reaches field capacity. The amount of runoff

is derived according to the rainfall and soil storage deficit.

The total runoff is then treated as the input to a free water

reservoir whose storage capacity is non-uniformly distributed

over the area. And its distribution is described by the par-

ameter EX. Through this free water reservoir, the total

runoff is subdivided into three components, the surface

runoff, RS, the interflow, RI, and the groundwater runoff,

RG. After that the surface runoff is routed to the outlet of

the study area through a Nash–cascade model with par-

ameters n and NK, while the interflow and the groundwater

runoff is routed through single linear reservoirs with reces-

sion coefficients CI and CG, respectively. The sum of these

three routing results is the simulated runoff of the XAJ model.

HBV model

For comparison purpose, another widely used determinis-

tic lumped conceptual model, the HBV model, which
s://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
was developed by the Swedish Meteorological and Hydro-

logical Institute in early 1970s, is used in this study. The

version of the model used in this study is HBV light (Sei-

bert ). The snow routine of HBV model is not

considered in this study because snowfall is rare in the

study region. The flowchart of this model is shown in

Figure 3. Input data of this model are daily precipitation,

P, and measured pan evaporation, EM. The output data

include daily actual evapotranspiration, E, and runoff at

the outlet of the study basin, Qsim. Model parameters are

in bold in Figure 3, and the meanings of these parameters

are listed in Table 2.

In the HBV model, actual evaporation equals to the

input evaporation if the ratio between soil moisture storage,

SM, and field capacity, FC, is larger than parameter LP.

Otherwise, a linear reduction is used to calculate the

actual evaporation (Figure 3). The input precipitation P is

divided into soil moisture storage and groundwater recharge

according to the value of SM/FC. Groundwater recharge is

then added to the upper groundwater box whose water sto-

rage is denoted as SUZ. The upper groundwater box has

three outlets, the fast flow outlet (Q0), the interflow outlet

(Q1) and percolation (PERC) to the lower groundwater

box. Q0 occurs only when SUZ is larger than a threshold

UZL. The lower groundwater box has only one linear



Figure 3 | Flowchart of the HBV model.

Table 2 | Parameters of HBV model

Number Parameter Explanation Range Unit

1 FC Maximum soil moisture storage 100–400 mm

2 LP Soil moisture value above which actual ET reaches potential ET 0.5–1.0 –

3 BETA Recharge-soil moisture curve coefficient 1.0–5.0 –

4 PERC Maximum flow from upper to lower response box 0–4.0 mm/day

5 UZL Threshold value for upper response box to runoff from K0 0–70 mm

6 K0 Recession coefficient 0.1–0.5 day�1

7 K1 Recession coefficient 0.01–0.5 day�1

8 K2 Recession coefficient 5E-05-0.1 day�1

9 MAXBAS Parameter of triangular weighting function 3.0–6.0 day
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outflow, Q2. The sum of the three groundwater outflows,

Q0, Q1, and Q2 is then transformed by a triangular weight-

ing function defined by the parameter MAXBAS to derive

the simulated runoff.
Model calibration method

The genetic algorithm is used to optimize the 15 free par-

ameters of the XAJ model and the nine free parameters of

the HBV model. For both models, the commonly used

Nash–Sutcliffe coefficient (NS) and the relative error (RE)

are used to evaluate the performance of the models. The
om https://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
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functions are expressed as follows:

NS ¼ 1�
P

(Qt
obs �Qt

sim)
2

P
(Qt

obs � �Qobs)
2 (1)

RE ¼
P

(Qt
obs �Qt

sim)P
Qt

obs

(2)

where Qt
obs, Q

t
sim, and �Qobs are observed, simulated and the

mean of the observed discharge series, respectively.

The split-sample test (Klemeš ) is used to assess the

performance of both models in simulating the rainfall-runoff

relationship of the study area. In this test, these two models
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are calibrated and validated by using the 41-year historical

runoff series of Hengyang runoff station. The 41-year histori-

cal runoff records are split into two sub-records, 1965–1985

and 1986–2005, for calibration and validation, respectively.

When these models are used for design flood estimation, the

41-year observed data are all used for model calibration to

achieve the best runoff simulation.

To evaluate the influence of using different model cali-

bration period and calibration length on the results of

design flood estimation, the 41 years of historical runoff

records are separated into several sub-records (overlap

exists) with the length of 2 years (40 sub-records), 5 years

(37 sub-records), 10 years (32 sub-records), 15 years (27 sub-

records) and 20 years (22 sub-records). Model parameters

are calibrated based on these sub-records using genetic algor-

ithm. Then the calibrated models are used to simulate the

runoff series of the whole period, 1965–2005 for comparison.

Pearson Type III distribution and L-moments approach

Annual maximum runoff series are selected from the 41-year

daily runoff observations and model simulations to estimate

design flood for a given return period. These annualmaximum

runoff series are analysed by fitting the Pearson Type III distri-

bution. Pearson Type III distribution was first applied in

hydrology by Foster () to describe the probability distri-

bution of annual maximum flood peaks (Chow et al. ).

This distribution is recommended for official use for frequency

analysis of annualmaximumfloods inChina, iswell tested and

widely used across the country for design flood estimation

(Hua ). The L-Moments approach as defined by Hosking

(), is used to derive the three statistical parameters (the

arithmetic mean Ex, the coefficient of variance Cv, and the

coefficient of skewness Cs) of the annual maximum floods.

Comparing with conventional moments, L-moments are

more robust to the presence of outliers and can make more

accurate inferences when the sample volume is small.

The GLUE method

Resulting from the uncertainties that are inherent in the

observed data, hydrological model parameters, model struc-

ture and the difference of model calibration periods, the

design flood estimation will unavoidably have some
s://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
uncertainty. The uncertainty caused by model parameter

equifinality is evaluated by the GLUE method. This

method was developed by Beven & Binley (). The

main idea of this method is that there is no optimal model

structure and model parameter set that can perfectly rep-

resent a river basin. Instead, this method keeps the idea

that there are many combinations of parameter values that

can reproduce observed runoff of a given river basin with

the same efficiency (Freer et al. ; Beven & Freer ).

General steps of the GLUE method are as follows:

Initially, a large number ofmodel runs are conducted for a par-

ticular model with many model parameter sets randomly

selected from subjectively determined parameter space with

priori probability distribution. As no information is available

about the parameter space, uniform distribution is chosen to

be the priori distribution. Then the likelihood value of each

model run is calculated by comparing the model simulations

and observations. Higher likelihood values indicate better

model simulation. After that, a cut-off threshold value is sub-

jectively chosen. Model runs with likelihood values less than

the cut-off threshold value are considered to be ‘non-behav-

ioural’ and will not be considered in the further analysis.

Finally, the 95% confidence interval of the runoff simulations

can be drawn from the remaining ‘behavioural’ model simu-

lations regarding their likelihood values as relative weights.

The annual maximum discharge series are selected from the

‘behavioural’model simulations. Then Pearson Type ΙΙΙ distri-

bution isfitted to each series, and the 95%confidence intervals

of the design floods of different return periods are derived con-

sidering the likelihood function value as weighting factor.

The choice of likelihood function has been discussed

extensively (Beven & Binley ; Romanowicz et al. )

since the outcome of the GLUE method. In this study, the

standardized Nash–Sutcliffe value is chosen to be the likeli-

hood measure.

Two indices are used to give a quantitative evaluation of

the GLUE simulation, the percentage of observations that

are contained in the 95% confidence interval (P-95CI) (Li

et al. ), and the average relative interval length (ARIL)

proposed by Jin et al. (). These two indices are expressed

as follows:

P� 95CI ¼ NQin

N
× 100% (3)



Table 3 | Model performance by split-sample test

Calibration Validation Simulation

Model Period NS RE (%) Period NS RE (%) Period NS RE (%)

XAJ 1965–1984 0.92 �0.33 1985–2005 0.72 20.58 1965–2005 0.83 10.59
1985–2005 0.90 0.11 1965–1984 0.79 �24.12 0.84 �11.56

HBV 1965–1984 0.91 1.49 1985–2005 0.76 13.96 0.84 9.18
1985–2005 0.88 0.09 1965–1984 0.79 �29.51 0.83 �14.06
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where NQin is the number of observations contained in the

95% confidence interval; N is the total number of obser-

vations.

ARIL ¼ 1
n

XLimitUpper,t � LimitLower,t

Robs,t
(4)

where LimitUpper,t and LimitLower,t are the upper and lower

boundary of the 95% confidence interval, respectively, and

Robs,tis the runoff observation.
RESULTS AND DISCUSSION

Model calibration results

Table 3 summarizes the split-sample test results. It is seen

from Table 3 that both models have excellent performance
Figure 4 | (a) Daily flow duration curve for observed, XAJ model simulated and HBV model simu

in probability scale to clearly demonstrate floods with lower exceedance probability

over the solid line indicate overestimation and vice versa.

om https://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
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in this study area in the calibration period. Somehow

reduced performance is seen for both models in the vali-

dation period in terms of NS and RE values. Considering

the total simulation period, the Nash–Sutcliffe value is

larger than 0.83 for both models, and the absolute value of

RE of XAJ model is less than 11.56% and that of HBV

model is less than 14.06%. This indicates that both models

performed equally well in representing the flow character-

istics of the study area.

When the 41-year observed data are all used for model

calibration, the Nash–Sutcliffe value of XAJ model is 0.88

and that of the HBV model is 0.87; the RE of the XAJ

model is 0.01%, and that of the HBV model is 5.23%. This

indicates that both models are well calibrated and give

good simulation results. As the runoff simulations are used

for flood frequency analysis, the daily flow duration curves

of the runoff observations and runoff simulations are
lated runoff series of the upper Xiangjiang River at Hengyang runoff station. The abscissa is

. (b) The deviation of simulated annual maximum flood peaks to the observed ones. Points
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drawn and shown in Figure 4(a). As the annual maximum

runoff series are analysed to estimate design flood, special

attention was given to the simulation of the annual flood

peaks. The 41 simulated annual flood peaks were selected

and plotted against the corresponding observed values to

evaluate the deviation of the simulated flood peaks. The

result is shown in Figure 4(b). It is seen that the difference

between the flow duration curve of the runoff observations

and that of the runoff simulations is small except in the

left hand tail, as expected. The mismatches to the extreme

left are mainly because of the imperfection of the models

in simulating floods with high return periods as well as the

errors in the model input data. Figure 4(b) further shows

that the XAJ model is likely to overestimate high flood

peaks but underestimate low flood peaks, and that HBV

model underestimates both high flood peaks and low flood
Table 4 | Statistic parameters of simulated and observed 41-year annual flood peak series

Mean Coefficient of Coefficient of

Data
value
(m3/s)

variance
value

skewness
value

Observations (1965–
2005)

9,944 0.359 0.883

Simulations (XAJ) 9,713 0.448 0.935

Simulations (HBV) 8,886 0.389 0.574

Figure 5 | (a) Frequency curves derived from runoff observations and simulations. (b) Design flo

5, 10, 20, 50 and 100 years.
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peaks. The impact of these imperfect simulations of peak

floods on the estimation of design flood is analysed in the

next section.

Design flood estimation

Annual maximum runoff series of observations and simu-

lations are selected. Their statistical parameters, the

arithmetic mean EX, the coefficient of variance Cv and the

coefficient of skewness Cs, are calculated using the

L-moments approach. The statistical parameters of observed

runoff are chosen to be the reference values. The results are

listed in Table 4, which shows that the mean value of annual

flood peaks is underestimated by both models. The coeffi-

cient of variance is overestimated by both models due to

the errors that are inherent in the simulated peaks. The Cs

value is overestimated by XAJ model, and underestimated

by HBV model. Just from these three statistical parameters,

it seems XAJ model gives better simulation of annual flood

peaks than HBV model.

Parameters of Pearson Type ΙΙΙ distribution are calcu-

lated based on these statistical parameters. Then this

distribution is fitted to the annual maximum runoff series.

The results are shown in Figure 5(a). The estimates of

design flood of different return periods are listed in

Table 5 and shown in Figure 5(b) to give a clear comparison.
w estimates and corresponding RE in percentage (absolute value) with return period T¼ 2,



Table 5 | Design flood estimations of different return periods from runoff observations

and model simulations

Return
Design flood
from

Design flood from XAJ
simulation

Design flood from HBV
simulation

period
(Years)

observation
(m3/s)

Value
(m3/s)

Difference
(%)

Value
(m3/s)

Difference
(%)

2 9,431 9,051 �4.0 8,558 �9.3

5 12,683 13,027 2.7 11,652 �8.1

10 14,706 15,523 5.6 13,468 �8.4

20 16,554 17,816 7.6 15,075 �8.9

50 18,837 20,661 9.7 17,004 �9.7

100 20,482 22,719 10.9 18,362 �10.4
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Since the length of available data is 41 years, design flood

estimates are presented up to 100 years only.

Figure 5(a) reveals that the XAJ model is likely to over-

estimate the design floods of long return period, while HBV

model underestimates them, though bothmodels arewell cali-

brated based on the same hydrometeorological data by

genetic algorithms. Figure 5(a) also shows that the slope of

the frequency curve derived from XAJ model simulation is

larger than the other two curves, and that the frequency

curve derived from HBVmodel simulation lies under the fre-

quency curve of observed annual maximum runoff series

though their slopes are similar. The reason is that, for the

XAJ model, though it gives good estimation of the mean

value of annual flood peaks, it overestimates the Cv value;

for theHBVmodel, it gives a better estimation ofCv, however

it underestimates mean value (Table 4). Figure 5(b) and

Table 5 show that, for a low return period, the difference

between the design flood estimates of the observed series

and that of the simulated series is small, while this difference

increases with the increase of return period. Figure 5(b) and

Table 5 also demonstrate that the absolute relative difference

of design floods estimated by the XAJ model is less than that

estimated by HBV model, especially for a low return period.

Table 5 shows that, for both models, the absolute values of

relative difference of the design flood estimate increases

with the increase of return period, and that their maximum

value is less than 11%. The difference between the design

flood estimates derived from runoff observations and simu-

lations is an illustration of the uncertainties that are

inherent in the continuous simulation approach. These uncer-

tainties are further analyzed in the next section.
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Uncertainty caused by model parameter equifinality

No ‘optimal’ parameter set could be found in hydrological

modelling practice, and many parameter sets may result in

similar results, which is the well known equifinality problem

in hydrological modelling. In this study, the effect of the equi-

finality problem on flow simulation as well as on the design

flood estimation is studied by using the GLUE method. The

likelihood threshold value required in the GLUE method is

subjectively determined to be 0.8. To reduce the number of

total model runs, only sensitive parameters (KE, SM, KG,

CI, CG, and NK) of XAJ model are considered to be free par-

ameters, other parameters retain their optimized values

derived in the section, ‘Model calibration results’. In this

study area, it is unnecessary to consider snow routine of

HBV model, so the number of free parameters of HBV

model reduces to 9. The ranges of free parameter for both

modelswhenapplying theGLUEmethodare listed inTables 1

and 2, and 100,000 times of model runs are conducted. After

selection, 12,849 times of XAJmodel runs and 14,258 times of

HBV model runs are considered to be ‘behavioural’ and are

used to derive the 95% confidence interval of runoff simu-

lation and that of design flood estimation considering the

likelihood value to be the weighting factor. For illustrative

purposes, the 95% confidence intervals of the flood year

(1978), the normal year (1987), and the dry year (1979) are

plotted in Figure 6.

Figure 6 shows that, for both models, 95% confidence

interval contains most of the runoff observations and no sig-

nificant difference between the HBV model simulation and

XAJ simulation can be found. Table 6 lists the values of indices

used for assessing the 95% confidence interval. It also shows

that the P-95CI and ARIL of both models are rather close,

with HBV model having slightly higher values of P-95CI.

The 95% confidence intervals of the design floods esti-

mation of both models are shown in Figure 7 and the

relative interval lengths of the 95% confidence intervals

are listed in Table 7. Figure 7 shows that for XAJ model,

the confidence interval is almost symmetrically distributed

around the frequency curve of the runoff observations

which is quite close to the interval median. However, for

the HBV model, most of the confidence interval is beneath

the frequency curve of the runoff observations, which indi-

cates that the HBV model is likely to underestimate the



Figure 6 | 95% confidence interval of simulated runoff series in flood year 1978, normal year 1979 and dry year 1987: (a), (b), (c) using XAJ model; (d), (e), (f) using HBV model.

Table 6 | Indices for assessing the 95% runoff confidence interval

Models

Indices Period XAJ HBV

P-95CI (%) 1965–2005 79.84 81.22
Flood (1978) 83.84 87.12
Dry (1979) 83.29 90.41
Normal (1987) 84.93 87.12

ARIL 1965–2005 1.07 1.14
Flood (1978) 1.13 1.29
Dry (1979) 1.17 1.43
Normal (1987) 1.24 1.12
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hydrological extreme values in this study basin. Table 7

shows that considering the same return period, the XAJ

model gives a wider 95% confidence interval though there

are less ‘behavioural’ model simulations of the XAJ model.

It also shows that for both models the relative interval

length is quite large even for the return period of just 2

years, which reveals that the uncertainty of model par-

ameters and model structure have a great impact on the

results of design flood estimation by continuous simulation.

Figure 8 shows the 95% confidence intervals of different

return periods. It reveals that the interval length increases



Figure 7 | The 95% confidence interval of frequency curve derived from runoff simulations (1965 to 2005). (a) Simulations of the XAJ model; (b) simulations of the HBV model.

Table 7 | Relative length of 95% confidence interval of frequency curves derived from XAJ

model simulations and HBV model simulations

Return period (years) 2 5 10 20 50 100

Relative interval
length (%)

XAJ 37.1 40.7 42.3 43.9 45.6 46.7
HBV 31.5 31.6 32.0 32.7 33.7 34.5

Relative interval length¼ (upper bound–lower bound)/estimation from observed runoff

series.
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with the increase of the return period and for each return

period the interval length derived from the XAJ model simu-

lation is larger than that derived from HBV simulation. In
Figure 8 | Boxplots of 95% confidence intervals of different return periods. Cross shows the de

to do model calibration without GLUE approach.
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summary, no matter how well the model parameters are

calibrated, the frequency curve derived from the determinis-

tic model simulations is only a single realization of the

process to be studied and not reliable due to the significant

influence of the model equifinality.

Uncertainty caused by using different model calibration

period and data length

Figure 9 demonstrates the frequency curves derived from the

runoff observations and runoff simulations with different
sign flood estimates derived from the model simulations using the whole data (1965–2005)



Figure 9 | Frequency curves derived from observations and model simulations with different model calibration periods and calibration length. The gray short dash line is the frequency

curves from model simulations; the thick long dash line is their median; the continuous line is the frequency curve from observations: (a), (b) and (c) are the 10-, 15- and 20-year

calibration lengths for the XAJ model, respectively; (d), (e) and (f) are the 10-, 15- and 20-year calibration lengths for the HBV model, respectively.
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Table 8 | Relative width of spread band of frequency curves derived from XAJ model simulations and HBV model simulations with different model calibration periods

Model XAJ HBV

CL (years) 2 5 10 15 20 2 5 10 15 20

RP (years) Relative band width (%)

2 47.9 42.7 35.7 32.0 24.1 42.9 28.0 21.7 17.4 16.0

5 46.1 39.6 31.5 28.8 22.0 37.9 23.7 15.6 11.0 10.8

10 46.1 39.1 29.9 27.8 21.8 36.3 23.4 14.5 9.7 9.6

20 46.4 39.4 28.8 27.3 22.1 35.5 23.5 14.0 8.9 9.0

50 46.9 40.1 28.2 26.9 23.0 34.8 23.9 13.7 8.5 8.7

100 47.4 40.7 28.4 26.8 23.7 34.6 24.2 14.0 8.4 8.8

Relative band width¼ (upper bound–lower bound)/estimation from observed runoff series. CL is calibration length, RP is return period.
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model calibration periods and calibration data length. It is

seen from Figure 9 that a wide spread of design flood esti-

mates is produced by using the different calibration

periods and data lengths. With the same calibration data

length, the spread of design flood estimates of XAJ model

is larger than that of the HBV model, which indicates XAJ

model is more sensitive to the difference of the calibration

period when used for design flood estimation by continuous

simulation. It should also be noted that the XAJ model is

likely to overestimate the design floods of longer return

period while HBV model will underestimate the design

floods. Figure 9 also shows that the value of exceedance

probability has no significant influence on the band width

compared with Figure 7, though the band is relatively a

little thinner in the middle and wider in the tails. This

means the uncertainty of model parameters has a greater

influence on the value of design flood estimation with a

high return period but less influence on the design flood esti-

mation of low return period. However, the influence of the

difference of model calibration period on design flood esti-

mation does not significantly vary with the return period

of design flood. This phenomenon can be quantitatively

demonstrated in Table 8.

It is seen from Table 8 that the relative band widths

derived from XAJ model simulations are larger than that

from HBV model simulations. Comparing Table 8 and

Table 7, it is clear that for a large return period, the uncer-

tainty caused by model parameter equifinality is more

significant than the uncertainty caused by using different
om https://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
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model calibration periods and data length, when applying

hydrological models to design flood estimation by continu-

ous simulation.

The change of band width of design flood estimation

with data length of model calibration is visually demon-

strated by Figure 10. It shows that the band width of

design flood with a certain return period decreases with

the increase of model calibration data length, which indi-

cates the increase of model calibration data length will

reduce the uncertainty caused by the difference of model

calibration period. However, when the model calibration

length is larger than a certain value (between 10 to 15

years), the further increase of calibration data length will

not result in a significant reduction of the uncertainty

caused by using different model calibration periods,

especially in the HBV model with less parameters. For the

study area, 15–20 years’ calibration data length for the con-

ceptual hydrological models seems necessary and sufficient,

and is recommended in design flood estimation by continu-

ous simulation to minimize the uncertainty caused by the

difference of model calibration period.

The above analyses demonstrate that the part of the data

used for model calibration has significant influence on

further design flood estimation, though it is not as significant

as the uncertainty caused by model parameter equifinality.

And once the hydrological model is well calibrated the

further increase of calibration period length beyond a cer-

tain threshold has little improvement on design flood

estimation.



Figure 10 | Variation of design flood band width with model calibration length. (a) XAJ model, (b) HBV model. Band width¼maximum estimation–minimum estimation of design flood with

a certain return period (RP).
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CONCLUSIONS

In this study, two hydrological models are used for the

design flood estimation by continuous simulation. Uncer-

tainty that is inherent in this methodology caused by

model parameter equifinality is further analysed by using

the GLUE method. Uncertainty caused by using different

model calibration periods and calibration data length is

also assessed. The study was conducted in a humid catch-

ment in southern China. The following conclusions are

drawn from the study.

Both models can give design flood estimations similar to

those derived from runoff observations with maximum

absolute RE of 11% for the design flood with a return

period less than 100 years.

The large width of the 95% confidence interval of the

flood frequency curve indicates significant uncertainty

caused by model parameter equifinality. This means no

matter how well the model parameters are calibrated, the

frequency curve derived from the deterministic model simu-

lations is only a single realisation of the possible values and

is not reliable due to the significant influence of the model

equifinality.

Different model calibration periods generate a wide

spread of design flood estimation and that the error band

width varies little with the exceedance probability, which
s://iwaponline.com/hr/article-pdf/47/4/701/367984/nh0470701.pdf
indicates that the uncertainty induced by the difference in

the model calibration period will have significant influence

on the estimation of design flood of all return periods. The

study also shows that once the model calibration data

length is long enough for model calibration, the further

increase of calibration data length has little improvement

on design flood estimation.

This study systematically investigates the applicability of

hydrological models to design flood estimation by continuous

simulation. The results show that great uncertainty exists in

this methodology. When applying this method to design

flood estimation, the uncertainty should be treated seriously,

or significant error may exist in the estimation results. How-

ever, this study is only a preliminary study because only two

deterministic lumped models are used and only one runoff

station in a humid region is considered. More studies need

to be done on other river basins using other hydrologic

models to draw a generalised conclusions and guidance for

design flood estimations using hydrological models.
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