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Abstract Accurately quantifying waterfowl migration

patterns is pertinent to monitor ecosystem health and

control bird-borne infectious diseases. In this review, we

summarize the current understanding of the environmental

mechanisms that drive waterfowl migration and then

investigate the effect of intra- and inter-annual change in

food supply and temperature (e.g., climate change) on their

migration patterns. Recent advances in remote sensing and

animal tracking techniques make it possible to monitor

these environmental factors over a wide range of scales and

record bird movements in detail. The synergy of these

techniques will facilitate substantial progress in our

understanding of the environmental drivers of bird migra-

tion. We identify prospects for future studies to test

existing hypotheses and develop models integrating up-to-

date knowledge, high-resolution remote sensing data and

high-accuracy bird tracking data. This will allow us to

predict when waterfowl will be where, in response to short-

and long-term global environmental change.

Keywords Waterfowl migration � Environmental

drivers � Phenology � Stopover � Remote sensing �
Bird tracking

1 Introduction

Migratory birds are important bioindicators for monitoring

the condition of complex ecosystems due to their sensi-

tivity to environmental changes [1–4]. Their migration

activities can alter ecological networks and influence eco-

logical community dynamics and ecosystem functioning by

transporting nutrients, energy and other organisms world-

wide [5]. Migratory birds also harbor zoonotic pathogens

and facilitate the long-distance spread of bird-borne

infectious diseases [6]. However, our knowledge about the

mechanisms underlying the migration patterns and decision

rules determining when and where to go, and how long to

stay is rather fragmentary, even for the most frequently

studied migratory bird species. An improved understanding

and accurate quantification of bird migration patterns are

needed by conservation organizations, policy makers and

other relevant communities to manage bird populations and

land, monitor ecosystem health and control bird-borne

infectious diseases.

Bird migration is principally driven by internal mecha-

nism (i.e., an internal clock under photoperiodic control)

[7] but is fine-tuned by external environmental factors [8].

Although much remains to be understood in terms of the

internal cues [9], our understanding of external environ-

mental cues controlling bird migration is particularly lim-

ited [10]. The reason is that bird migration activities often

stretch over vast distances spanning large, remote and

inaccessible areas, and the traditional field measurement

method is not feasible. Recent advances in remote sensing
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and animal tracking techniques enable us to monitor the

environment over a wide range of spatiotemporal scales

and record detailed spatiotemporal bird migration patterns.

These developments will facilitate substantial progress in

understanding the environmental mechanisms underlying

bird migration patterns.

Among migratory birds, we are particularly interested in

waterfowl because: (1) they exhibit stronger phenotypic

plasticity than other bird taxa under photoperiod control in

response to the constraints of other environmental factors

on their aquatic habitats [11–15]; and (2) they are an

important spread agent facilitating the global transmission

of highly pathogenic avian influenza [16–20]. In this

review, we summarize the environmental mechanisms that

drive waterfowl migration patterns, with an emphasis on

key environmental factors and the role that remote sensing

and modern bird tracking techniques could play in

improving the prediction of waterfowl movements at a

global scale. We conclude our review with prospects for

future studies.

2 Understanding the environmental drivers

of spatiotemporal waterfowl migration

The annual change in day length is the most reliable

indicator of seasonality in governing the annual life cycle

of migratory birds [21, 22]. Day length is adopted by many

species as the proximal stimulus triggering the onset of the

migration cycles [7, 23, 24]. In concurrence with appro-

priate photostimulation, the photoperiod response might be

modified by other environmental factors [24]. However, the

photoperiod is consistent year to year, whereas other

environmental factors vary. It is advantageous for wild

birds to be able to adjust to suit current circumstances.

Hence, the effect of day length normally initiates

preparatory processes in migration, whereas other envi-

ronmental factors play a greater role as migration pro-

gresses [8].

Migration is most pronounced in environments in which

food supplies vary greatly over the seasons and where

migration enables birds to exploit a surplus in food

resources and avoid seasonal shortages [8, 25, 26].

Migratory waterfowl breed at high-latitude areas with

abundant high-quality food during summer and winter

toward the equator in areas with mild conditions. Addi-

tionally, improved survival of the adults and young at high

latitudes due to low predation risks balances the cost of

long-distance migration [27, 28]. When migrating to the

north, those waterfowl that make best use of resources

available along the route are favoured by natural selection.

Similarly, waterfowl that efficiently avoid deteriorating

conditions at the breeding area (e.g., food shortage, low

temperature, frozen water/ground, or snow cover) by

migrating to low-latitude areas during autumn migration

are at an advantage.

On top of this, hypotheses have been formulated to

address how the seasonal environment affects the migra-

tion patterns of waterfowl. In regard to spring migration,

the ‘‘green wave hypothesis’’ predicts that herbivorous

birds track a succeeding spring flush of plants on their way

from the temperate wintering grounds to the Arctic

breeding sites [29, 30]. For example, water birds that

migrate along the western Palearctic continental flyway in

spring often stopover at sites where fresh spring grasses are

available [31]. This food-based prediction has been

extended to also explain other bird species: Insectivorous

species track the emergence of insects that coincides with

the vegetation green-up [32] and fish-eating species track a

‘‘silver wave’’ of fish spawn during spring migration [33].

In contrast to a successively northern food flourishing in

spring, autumn migration could be explained by the ‘‘food

shortage hypothesis’’. Migratory birds have to leave the

high latitudes before their food supplies collapse and

continued survival becomes precarious [8]. The harsh

winter at high latitudes causes food to become completely

unavailable for waterfowl due to plant senescence and/or

food being locked by frozen soils or waterbodies [34].

Therefore, when food conditions at their present staging

area deteriorate, waterfowl tend to progressively move to

more southern sites until they reach a site where food is

available throughout the winter. Birds might leave some

perfectly available food behind if using these stocks would

not be energetically profitable enough in the long run.

Recent work has also demonstrated continuous movement

and rapid turnover among duck populations wintering at

the southern or southwestern edge of their range, likely

because these birds constantly track subtle changes in the

availability of their food [35–37]. Waterfowl tend not to

migrate further south than necessary in order to save

energy and avoid the dangers of traveling, as well as to be

able to return to their breeding ground as soon as condi-

tions allow [8, 26]. European waterfowl are often observed

wintering along the southern part of the winter 0 �C iso-

therm [38], just beyond the snow line where grass growth

has stopped.

Climatic factors are often used as surrogates for seasonal

ecological conditions in the study of waterfowl migration

patterns. Temperature is frequently used because of its

effects on energy needs, food supply (vegetation growth

and insect activity), water availability, wind condition and

other relevant climatic events [8, 14, 39–42]. In general,

warm temperatures in spring (both globally and locally)

trigger northward waterfowl migration toward high alti-

tudes, and cold temperatures in autumn (e.g., freeze-up)

lead to southward departure from high-altitude sites. Wind
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condition can also influence migration timing and stopover

patterns due to its effects on travel speed, flight times and

energy expenditure [8, 43, 44]. Tailwinds facilitate a direct

migration strategy, allowing the bypassing of potential

stopover sites, whereas headwinds can prevent a nonstop

migration due to the need for refueling [45, 46]. Snow

cover can affect the timing of spring arrival at the breeding

grounds and also the breeding success of many Arctic-

breeding species [39], and frost is assumed to trigger

waterfowl autumn migration [47]. Furthermore, precipita-

tion shows a pronounced effect on changes in waterfowl

migration timing in southwestern Australia, where vege-

tation growth is largely limited by soil water availability

[48, 49].

Other factors such as human disturbance (e.g., land use

and hunting/poaching), predation and competition for food

may overrule the above effects locally and result in changes

in migration patterns. For example, geese are found to stay

a much shorter time at sites with a high disturbance level by

local farmers and hence are forced to stay longer at non-

disturbed sites with deteriorating foraging conditions during

spring migration [50]. The opening of the hunting season

triggers the autumn departure of ducks from Finland [51].

Geese also tend to depart earlier, stay shorter or bypass area

with increased predation risks or increased food competi-

tion that might cause a low-energy deposition rate [52–54].

The hypothesized external environmental effects influenc-

ing waterfowl migration are summarized in Fig. 1.

3 Testing environmental effects on waterfowl migration

patterns

Two types of effects have been explored regarding the

environmental mechanisms of waterfowl migration pat-

terns: the intra-annual environmental change effect on

seasonal bird migration patterns and the inter-annual

environmental change effect (e.g., climate change) on

migration phenology. We mainly focus on two key envi-

ronmental factors, namely food and temperature.

3.1 The effect of intra-annual variation in food supply

on waterfowl migration

Many studies suggest that herbivorous waterfowl consis-

tently follow the onset of spring along their migration

routes. The onset of spring, quantified by growing degree

days (GDD), or the peak of temperature increase (GDD

jerk), has a stronger correlation with the departure, arrival

and staging decisions of geese migrating from West Europe

to Arctic, than other energetic cues (e.g., intake rate) or

environmental cues (e.g., latitude and snow cover) [55–57].

The onset of spring in general indicates the start of the

growing season. However, as total plant biomass increases

after the onset of spring, digestibility decreases. Therefore,

immature plants at an intermediate development stage offer

the optimal intake rate of digestible nutrients as predicted

by the ‘‘forage maturation hypothesis’’ [58–60].

Considering the food maturation effect, it has been

demonstrated that waterfowl track different levels of plant

developments at different stages of their migration. A field

experiment study found that barnacle geese Branta leu-

copsis in Europe follow the peak in nutrient biomass

(plants with the highest amount of nitrogen per unit area)

during spring migration, but arrive at their Russian

breeding site early so the subsequent food peak coincides

with the time of gosling rearing [61]. This overtaking of

green wave has been recently demonstrated by two studies.

Kolzsch et al. [62] found that barnacle geese arrive at the

southern stopover sites after the onset of spring (calculated

based on the peak of temperature acceleration) and at the

breeding ground before it. Facilitated by detailed satellite-

derived plant development stages, Si et al. [63] demon-

strated that barnacle geese arrive at the southern stopover

site at the peak in nutrient biomass and gradually overtake

the green wave, arriving at their breeding sites at the onset

of spring. When simulating the spring migration timing of

European geese using an individual-based model and the

Fig. 1 Hypothesized environmental factors underlying waterfowl

migration patterns
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onset of spring as a rule (without considering the over-

taking process) [56], the match between the observed and

simulated timing shows a poorer fit at the southern stop-

over site than the northern ones. However, this overtaking

of the green wave needs to be further validated using other

bird species migrating along different flyways over exten-

ded period of time.

Piscivorous waterfowl time their spring migration

schedule based on the availability of food, and some

omnivorous waterfowl overtake the peak of food supply.

The northward migration of surf scoters Melanitta perspi-

cillata along the Pacific coast from Baja California to

Alaska shows a close association with herring spawning

events [33]. Based on field measurement of food abun-

dance, Eurasian teal Anas crecca leave their wintering and

spring staging site before a sharp increase in invertebrates

and seeds, and time duckling hatching at their breeding

grounds in Sweden to coincide with the local peak in food

abundance [64]. However, whether birds adopt this over-

taking strategy to optimize food conditions for offspring

and/or because of a lower predation risk and longer feeding

time (due to longer day length) at the breeding site [27, 64]

needs further investigation.

The effect of intra-annual variation in food supply on

waterfowl autumn migration patterns has hardly been

investigated. Geese are observed to use a more direct and

shorter migration route than they use in northward spring

migration, especially when wind conditions are favorable

[45, 46]. A possible reason could be that during spring

migration, birds need to accumulate body store via detour

route for a successful breeding, whereas in autumn

migration, minimizing travel distance might overrule

maximizing body store. On the other hand, ducks ringed in

southern France seem to migrate faster in spring than in

autumn [65]. Further investigation on the effect of food

conditions could shed more light on the different strategies

employed during spring and autumn migration.

3.2 The effect of inter-annual variation in food supply

on waterfowl migration

Only a few studies have explored the effects of the inter-

annual variation in food supply (and/or quality) on bird

migration, and they suggest that waterfowl adjust their

migration according to this inter-annual variation. Tombre

et al. [66] found the Svalbard-breeding populations of

geese migrate earlier in years with an earlier onset of spring

(quantified by a satellite-derived vegetation index). Straub

et al. [67] measured plant and invertebrate food for spring-

migrating ducks in the Upper Mississippi River and Great

Lake Region and found the food biomass varied widely

between years and among habitats. They suggest future

studies should investigate how duck migration patterns are

influenced by the spatiotemporal variation of food supply,

but no further attempt has been carried out. Based on a

long-term field observation of foraging habitat quality of

dabbling ducks A. platyrhynchos in the Illinois River val-

ley, O’Neal et al. [68] found a considerable variation of

inter-annual stopover duration during autumn migration,

positively related to the foraging quality of stopover sites.

Using long-term ringing datasets for common teal A.

crecca from southern France, Guillemain et al. [69] found

that teal arrive much earlier at their winter quarters in

autumn migration due to the increased food availability in

these areas. So far knowledge about the effects of the inter-

annual variation in food supply on waterfowl migration is

relatively limited, probably due to the difficulty of mea-

suring the long-term food variation over large geographical

scales in the field.

3.3 The effect of intra-annual variation in temperature

on waterfowl migration

Temperature is often used as a surrogate of food conditions

due to the difficulty of measuring food supply in the field

along the migration route. Local accumulated temperature

(degree days) is found to be a more accurate predictor for

the spring migration schedule of European waterfowl than

the actual temperature at departure or arrival dates [56, 70].

Local accumulated temperature can be used to infer the

advance of spring and help birds to adjust the progress of

their northward migration, for example by accelerating

their migration when it is warmer [70].

Frost pattern derived from temperature (the first time the

night land surface temperature drops to below zero) has

been used to explain the waterfowl autumn migration

pattern [47], but this relationship has not yet been validated

using empirical bird migration data. Waterfowl wintering

phenology has seldom been investigated. Waterfowl win-

tering in three tropical Indian wetlands is found to arrive

earlier in autumn and depart earlier next spring in sites/

years with higher overwinter temperatures [71].

3.4 The effect of climate change and inter-annual

variation in temperature on waterfowl migration

Many studies focus on the impact of climate change on

spring migration phenology and breeding success of

migratory waterfowl [1]. For example, some waterfowl

have altered their arrival and departure dates in accordance

with the recent decades of climate warming [11–13, 52,

72–74], whereas for other bird species that maintained their

migration schedule or advanced little relative to spring

phenology, mismatches between arrival time and breeding

season were found [75–77]. In areas where a long-term

temperature increase was not reported, waterfowl are able
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to adjust their spring migration timing with the inter-annual

variation in temperature [78]. In general, short- or medium-

distance migrants can cope better with climate change than

long-distance migrants [11, 13–15, 74].

A pronounced negative effect has been reported for

European and American waterfowl between the timing of

spring migration and the temperature (spring temperature

and/or winter temperature) at the breeding grounds [11, 14,

73, 74], stopover sites [41, 78] and passage sites [13, 15].

Some large-scale temperature events, such as a higher

winter North Atlantic Oscillation (NAO), also promote an

earlier waterfowl passage over Europe [15] and an earlier

arrival at European breeding grounds [14, 74]. In regard to

the departure time from wintering grounds, next to a

warmer temperature, other factors such as increased com-

petition and a high level of accumulated fat store also

trigger an earlier departure of waterfowl from their win-

tering sites in Europe [52, 79].

However, different responses of early and late migrants

to temperature conditions at different migration stages have

been reported. At the breeding grounds, peak arrival time

of American duck species is strongly correlated with local

spring temperature [73]. On the other hand, bird species

that arrive early, as well as the earlier cohorts within spe-

cies, show a stronger response (i.e., a stronger correlation)

to temperature change at the wintering grounds and along

the migration route in Europe and North America [13, 15].

Similarly, the earlier departure of waterfowl from the

wintering site in Ireland due to an increased February

temperature is more pronounced for early departing indi-

viduals (the first 50 % of population) than for late ones

[52]. Further investigation is needed to explain these dif-

ferent responses at different migration stages.

4 Remote sensing and bird tracking help

the understanding of waterfowl migration

Remote sensing is an efficient tool to monitor environ-

mental conditions over time across large geographical

scales [80–82]. Bird tracking data, obtained by satellite

telemetry and other tracking techniques, enable us to

determine a detailed spatial and temporal resolution of

avian distribution patterns [83–85]. The synergy of remote

sensing and modern tracking techniques offers a promising

way to test the mechanism that shapes waterfowl migration

patterns. Bird tracking data could be synchronized with

remote sensing data with varying spatial and temporal

resolutions to analyze bird migration patterns. Satellite data

from a single sensor are often limited by the trade-off

between the spatial, temporal and spectral resolutions.

Together with detailed bird tracking data, remote sensing

data with a high spatial resolution could be used to

investigate local environmental conditions and effects,

whereas data with a high revisit rate could be used to

analyze the effects of environmental changes on bird

migration. Additionally, it is possible to derive environ-

mental conditions from imagery with a high spatiotemporal

resolution by fusion of data from different satellite sensors.

However, such applications integrating bird tracking data

and remote sensing data analyzing bird migration patterns

have so far been rather limited.

GDD have been frequently used in previous studies to

identify the onset of spring, whereas vegetation phe-

nology derived from earth observing satellite data is

superior to those derived based on modeling approaches.

The onset of spring derived from GDD mainly considers

the temperature influences on vegetation growth [86],

but both water availability and photoperiod could limit

vegetation photosynthetic activities and phenology [87–

89]. Satellite-derived vegetation indices offer a more

direct and detailed measurement of plant development

and provide a unique way to investigate the effect of

intra- and inter-annual variation in food supply on bird

migration patterns.

The application of satellite-derived vegetation indices in

analyzing bird migration patterns is still limited, and phe-

nological events are often identified using relatively

coarse-resolution vegetation indices of, e.g., 15-d 8 km

[66, 90] or monthly 28 km [91], as well as combined with

arbitrary thresholds or relatively broad ranges. Low spatial

and temporal resolutions tend to miss necessary details for

identifying specific phenological events. Using one pre-

defined threshold of vegetation indices to identify the onset

of spring overlooks the differences between plant species

and communities. Migration strategies such as the over-

taking of the green wave [63] could be overlooked if the

plant development stage that is supposed to be chased by

waterfowl is defined too broadly, simply because spring

migration coincides with the spring growing season. High-

resolution imagery such as the moderate-resolution imag-

ing spectroradiometer (MODIS) daily 250 m vegetation

indices could be used in future studies, in combination with

more sophisticated phenology extracting methods such as

the piecewise logistic models [92]. Moreover, a satellite-

derived net photosynthesis index could be used to describe

plant productivity [32] and study waterfowl migration

patterns.

Remote sensing also offers a reliable way to estimate

land surface temperature over extended periods of time and

across large geographical scales [81], with a relatively high

spatial resolution and temporal frequency, e.g., MODIS

1 km daily day and night land surface temperature prod-

ucts. Local accumulated temperature derived from these

products could be used to test the change in temperature on

waterfowl migration patterns. Frost patterns derived from

1988 Sci. Bull. (2015) 60(23):1984–1993
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these land surface temperature products could be used to

test how autumn migration schedule of waterfowl is

influenced by the timing of frosts [93]. The MODIS snow

products (with an overall absolute accuracy of 93 % of the

500 m resolution products) provide fractional snow cover

covering a range of spatial and temporal resolutions, from

500 m to 0.25�, and from daily, 8 d to monthly. However,

no attempt has been made to utilize satellite-derived land

surface temperate in bird migration studies, and satellite-

derived snow cover has only been used by Madsen et al.

[39] as a surrogate of the availability of the waterfowl

breeding sites to investigate the breeding timing of geese.

Although ringing and field counting data are still com-

monly used in bird migration studies, these data cannot

provide a true tracking of the migration routes due to

unequal geographical distribution of potential human

hunters/observers. The development of bird tracking tech-

niques, from short-distance, short-life radio telemetry, low-

positioning accuracy geolocators [94], to long-life, high-

accuracy satellite transmitters, enables us to track both

local and long-distance migration of birds over multiple

years [84, 85, 95]. Tracking devices are becoming lighter,

so that ever smaller species can be tracked. Battery life and

energy use are improved, and temporal and spatial reso-

lution is increasing, so that more detailed information is

collected. Also, the collected bird tracking details can help

an efficient future deploy of transmitters (e.g., by discov-

ering molting area where bird capture is more efficient).

Moreover, the massive reduction in the cost of these

tracking devices now allows switching from the descriptive

study of a handful of individuals to proper analyses of

numerous birds, relevant to the population level. This

enables a more rigid study design: tracking at least 20 birds

to make reliable inference about questions with two pos-

sible outcomes and at least 75 individuals for a problem

with three outcomes [96]. Modern transmitter types used in

tracking migratory waterfowl are summarized in Table 1.

Bird tracking data have been extensively used to

describe waterfowl migration routes, stopover patterns and

staging periods at the individual level [85]. However, most

previous studies are descriptive; studies linking detailed

spatiotemporal movements of birds derived from tracking

data with environmental conditions are limited. Only

recently has the overtaking of the food wave strategy

during waterfowl spring migration been tested using

tracking data of individual birds [63]. Furthermore, previ-

ous studies analyzing the environmental drivers of water-

fowl migration patterns mainly used a few traditionally

known stopover sites, although the importance of analyzing

the whole migration course and multiple stopover sites has

been emphasized [15, 55].

When birds are captured for tracking, detailed information

about their age, weight and morphology can also be recorded

and integrated in the modeling of migration patterns [70].

Other data such as altitude, temperature, light (day/night),

speed and acceleration (from which bird behavior can be

derived) recorded by tracking loggers can be used as ancillary

information to help understand migration patterns. Figure 2

summarizes the methodology used in analyzing the environ-

mental mechanisms in waterfowl migration patterns with

remote sensing and bird tracking techniques.

5 Prospects for future studies

We summarized the up-to-date understanding of the envi-

ronmental mechanisms underlying waterfowl migration

patterns, with an emphasis on two key factors, namely food

and temperature. We urge that these findings be verified

using empirical waterfowl migration and satellite-derived

environmental data and be integrated in the modeling

process to further improve the prediction of waterfowl

migration patterns. Specifically, we identify the following

prospects for future studies:

Table 1 Modern bird tracking techniques used in waterfowl migration studies

Transmitter Position accuracy Tracking type Characters

GPS/GSMa ±18 m Satellite Continuous tracking, rechargeable battery

PTT 3:\150

2: 150–350 m

1: 350–1,000 m

0:[1,000 m

Satellite Interval tracking, rechargeable battery

Geolocator 186 ± 114 km Logging Continuous tracking, power source, recapture to retrieve data

GPS global positioning system, GSM global system for mobile communications, PTT platform transmitter terminals, PPT position accuracy 3, 2,

1 and 0 indicate different accuracy classes
a Two types of GPS transmitters with different data retrieval systems: satellite relay or GSM systems
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(1) The strategy of overtaking the wave of food avail-

ability during waterfowl spring migration needs to be

further validated and integrated as one of the decision

rules in the modeling of migration patterns. Relying

on the onset of spring as a rule over the whole course

of spring migration lowers the predictive power of

models. The satellite-derived peak in nutrient biomass

and onset of spring can be combined to quantify the

strategy of the overtaking of the green wave and

incorporated in bird migration models (e.g., individ-

ual-based model).

(2) The effects of inter-annual variation in food supply on

waterfowl migration need further investigation.

Future studies can benefit from up-to-date remote

sensing techniques and environmental datasets that

quantify the long-term food variation at the conti-

nental scale. Specifically, food conditions along the

migration routes described by, e.g., plant phenology

and productivity derived from time-series satellite

imagery can be used to investigate how waterfowl

react to the change in food conditions across different

years.

(3) The environmental mechanisms underlying waterfowl

autumn migration patterns need further exploration,

given that previous studies mainly focused on spring

migration. The effect of plant senescence and

lowering temperature on waterfowl autumn migration

phenology has not yet been thoroughly investigated,

though temperature effects have been taken as a given

and commonly used in avian influenza studies. Plant

development stages derived from remotely sensed

vegetation indices and land surface temperature

products retrieved from satellite imagery should be

used to further study autumn migration patterns.

(4) More studies are needed to better understand water-

fowl migration patterns and environmental conditions

along the Asian flyways. The European and American

flyways have been most frequently studied, but

human–bird conflicts including natural resource uti-

lization conflicts (e.g., habitat deterioration due to

land use change), economic risks (e.g., agricultural

losses), and human health and safety risks (e.g.,

diseases transmission) are more pronounced in Asia.

Comparative studies should test for similarities and

potential differences in underlying environmental

mechanisms among the different flyways.

(5) Modern tracking techniques allow spatiotemporal

tracking of birds at an accuracy previously unattain-

able. Satellite-derived environmental data (e.g., plant

phenology and temperature) are available in ever-

increasing spatiotemporal resolution. Data mining of

these datasets is crucial for validating and improving

Fig. 2 Methodology for using remote sensing and bird tracking techniques to analyze the environmental mechanisms and predict waterfowl

migration patterns
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our understanding of the environmental cues that

waterfowl use during migration. For example, a

complete stopover network could be derived from

bird tracking data; together with the corresponding

environmental conditions derived from satellite data,

previous findings can be validated and new hypoth-

esis could be generated. Furthermore, these data

layers, covering large geographical areas and

extended period of time, can be incorporated in

models to predict future bird migration patterns.

To further understand the environmental mechanisms

underlying waterfowl migration and develop models which

integrate high-resolution remote sensing-based environ-

mental datasets and detailed spatiotemporal bird tracking

data will allow us to predict when waterfowl will be where,

in response to short- and long-term global environmental

change, and will facilitate the monitoring of ecosystem

health and a better management of waterfowl and land, and

minimize the potential economic, health and safety risks

birds pose to humans.
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