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� The relationship between urban form and CO2 emissions is investigated.
� A panel data model is used, taking the period 1990–2010.
� The growth of urban areas correlates positively with CO2 emissions.
� Increases in urban continuity has an inhibitory effect on CO2 emissions.
� Increased urban shape complexity exhibits a positive influence in relation to CO2 emissions.
a r t i c l e i n f o

Article history:
Received 15 December 2014
Received in revised form 19 August 2015
Accepted 21 August 2015
Available online 5 September 2015

Keywords:
Urban form
CO2 emissions
Panel data model
30 Provincial capital cities
China
a b s t r a c t

Urban form is increasingly being recognised by scientists for the potential role it might play in the coor-
dination of sustainable urban development and the reduction of CO2 emissions. However, despite
increasing interest in the morphology of cities in climate change science, few quantitative estimates have
been made of the effects of urban form on CO2 emissions. The goal of this study is to quantify this relation,
using panel data for China’s 30 provincial capital cities from 1990 to 2010. In order to meet this aim, we
first selected a series of urban form indicators, which we quantified by applying spatial metrics to remo-
tely sensed data. We then estimated CO2 emission levels using a unified standard method recommended
by the IPCC Guidelines, and subsequently performed a panel data analysis. The results of the study
demonstrated a positive correlation between the growth of urban areas and CO2 emission levels.
Further, it was also found that increased ‘‘urban continuity” led to reductions in CO2 emissions and that,
conversely, increased ‘‘urban shape complexity” exerted a positive influence in relation to CO2 emissions.
The findings of this study indicate that measures to make existing cities in China more compact may in
fact help to reduce levels of CO2 emissions, just as increasing fragmentation or increased irregularity with
respect to urban form may contribute to increased CO2 emissions. If serious about achieving meaningful
reductions in CO2 emissions, decision makers and planners should take urban form into consideration
when developing low-carbon cities in China.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction is a result of rising CO2 levels in the Earth’s atmosphere [1]. Human
Carbon dioxide (CO2) is the greatest known contributor to cli-
mate change, and the global warming we are currently witnessing
emissions of the gas, which have been increasing globally since at
least the Industrial Revolution (that is, the late 18th century), have
now reached levels not seen for at least three million years [2].
Concomitantly, the past century has also seen the gradual transi-
tion of the global population towards urban living, a shift which
has resulted in spectacular levels of urbanisation, with the global
urbanisation level rising from 10% in 1900 to 52.6% in 2011 [3,4].
Linking these two developments, current scientific research indi-
cates that human activities in urban areas now constitute the pri-
mary source of anthropogenic CO2 emissions [4], and cities, whilst
covering less than 3% of the Earth’s surface, consume 75% of the
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world’s energy and produce 80% of global greenhouse gas emis-
sions [5]. At the same time, cities and towns can also promote glo-
bal economic growth and improve living standards. Whilst city
administrations and national governments struggle to support eco-
nomic development, they therefore also face increasing pressure to
address the impacts of climate change associated with such
growth. Curbing fossil-energy use and emissions in urban areas
while concurrently continuing to maintain urban development
therefore constitutes a key challenge for governments internation-
ally [6–9]. In the context of this complex issue, decision makers
and urban planners concerned with sustainable development are
required to pay great attention to the formulation of measures that
can effectively reduce CO2 emissions and mitigate climate change.
In addition to traditional emission reduction measures that rely on
technology and policy solutions, it is recognised that urban form
(that is, the spatial patterns and structural features of urban land
use) is implicated in urban CO2 emission levels [9,10]. Despite this
recognition, only a limited number of studies have empirically
evaluated the direct impacts of different urban form patterns on
CO2 emissions. This deficiency in the current research motivates
the present study and its aim to quantify the relationship between
urban form and CO2 emissions.

Although many factors affect CO2 emissions (for instance,
industrial production, transportation, local climates and the burn-
ing of fossil fuels, to name but a few), the spatial evolution of urban
sprawl is highlighted as a particularly important influencing factor
[11–15]. Urban form can be defined as the spatial organisation and
arrangement of human activities – it affects how cities grow and
expand and how efficiently they are able to configure resources,
land use, transport and infrastructure [10,12,16]. Previous studies
have addressed a number of influencing factors which begin to
explain the relation between urban form and CO2 emissions
[12,17–22], particularly in terms of the effects of urban form on
urban infrastructure [23], urban transportation [24], urban heat
inland effects [25], carbon taxes [26], the energy efficiency of
buildings [11] and residential energy demand [27], in addition to
local climatic conditions. Pursuant to these previous studies, the
impact of urban form on CO2 emissions appears to be both signif-
icant and profound. Taking this link as the basis for their work, a
number of scholars have concluded that designing more compact
and more complex cities could decrease CO2 emissions. For
instance, using Helsinki city as an example, Harmaajarvi et al.
[28] found that a compact urban development pattern could save
as much as 35% of the study district’s 2010 total energy usage,
through changes in urban transport and district heating. In their
analysis of the relationship between the urban form patterns of
China’s fastest growing cities and CO2 emissions, which used panel
data analysis, Ou et al. [10] similarly found that compact, multiple-
nuclei development patterns (rather than dispersed, single-nuclei
development patterns) help to reduce CO2 emissions. These results
are supported by the findings of studies undertaken in relation to
the U.K. by Banister [29], in Canada by Christen et al. [30], in Japan
by Makidoa et al. [31] and in China by Wang et al. [22]. Using Bei-
jing as an example, Ma et al. [32] investigated how urban form
impact individual’s daily travel behaviour and subsequent CO2

emission from work and non-work trips, respectively. They found
that residents living in neighbourhoods with higher job density
emitted less CO2 from work related trips, and people resident in
neighbourhoods with higher retail density tended to travel shorter
distance and emitted less CO2 emission from non-work trips. From
the viewpoint of energy consumption and CO2 emissions to assess
the sustainability of urban form, Ye et al. [33] found that urban
sprawl aspects of compactness were positively correlated with
urban household energy use CO2 emissions. Using 125 largest
urbanised areas in the U.S., Lee and Lee [34] examined how urban
form influence an individual household’s CO2 emissions. They
found that doubling population-weighted density was associated
with a reduction in CO2 emissions from household travel and res-
idential energy consumption by 48% and 35%, respectively. They
suggested that smart growth policies to build more compact cities
were useful to mitigate CO2 emissions. Similarly, using the Greater
Dublin Region as an example, Liu and Sweeney [27] estimated the
relationship between CO2 emissions and urban form. They found
that the energy-related CO2 emissions could be significantly
decreased by building compact cities.

These existing studies generally indicate that low-carbon
energy solutions and energy conservation are important emission
reduction measures. However, urban planning and spatial optimi-
sation methods are also required to reduce CO2 emissions [2].
Studies addressing the nature of the link between urban form
and CO2 emissions have, as a result, become increasingly impor-
tant. As a factor associated with spatial urban planning, urban form
could in fact constitute the basis for a new rationale in the coordi-
nation of urban sustainable development and the reduction of CO2

emissions. It is therefore quite remarkable that such a limited
number of studies have engaged in the task of quantitatively esti-
mating spatiotemporal changes in urban form, or have quantified
the impact of urban growth and sprawl on CO2 emissions.
Although some studies have attempted to quantify urban form pat-
terns by calculating ratios between two related variables (for
instance, through the use of compactness ratios, elongation ratios
and urban population density measures) [21], such research denies
the process-based character of urban sprawl – which in fact
evolves spatially – and further, it neglects the fundamental role
played by the basic statistical unit (in terms of landscape metrics).
These omissions are evident in the study of CO2 emissions in Bei-
jing conducted by Qin and Shao [35], who, whilst presenting a
new method based on questionnaire data in relation to building
and travel (a method which enabled them to estimate the direct
CO2 emissions of the residents of a given community), did not con-
sider the land-use patterns and characteristics of their study area.
Although previous studies have certainly enriched our understand-
ing of the relationships between CO2 emissions and urban form,
they have concurrently failed to provide systematic and explicit
evidence in relation to how urban form affects those emissions.

The design of the present study attempts to address many of
these deficiencies. As such, we first calculated energy-related CO2

emissions using a unified standard method recommended by the
IPCC Guidelines [36]. We then analysed and compared the urban
form patterns of various cities using pre-existing sprawl indexes
and spatial metrics based on remotely sensed land-use and land-
cover data. Based on these calculations, and by employing a range
of analysis techniques, we generated a number of quantitative
measures in relation to the spatial and temporal characteristics
of CO2 emissions, of urban built-up areas and of various urban form
patterns. Finally, we attempted to quantify the relationship
between CO2 emissions and urban form using a panel data analy-
sis. The panel data model was chosen because of its many advan-
tages over conventional cross-sectional or time series models
[37,38]. China’s 30 provincial capital cities (Beijing, Changchun,
Changsha, Chengdu, Chongqing, Fuzhou, Guangzhou, Guiyang,
Harbin, Haikou, Hangzhou, Hefei, Hohhot, Jinan, Kunming, Lanz-
hou, Nanchang, Nanjing, Nanning, Shanghai, Shenyang, Shiji-
azhuang, Taiyuan, Tianjin, Wuhan, Urumqi, Xi’an, Xining,
Yinchuan, and Zhengzhou) constituted the study area in this
research. As provincial capital cities, these cities suffer from a ser-
ies of environmental problems and their CO2 emissions continue to
grow as a result of their rapid urban growth and sprawl. Address-
ing the panel of these 30 cities, the study attempted to explore the
relationships between urban form and CO2 emissions using time
series data for the period 1990–2010. Our findings not only offer
a scientific model for analysis, but also suggest a rational path
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for future urban expansion strategies, thereby providing guidance
for the formulation of future urban planning principles.

The remainder of this paper is organised as follows. Section 2
briefly describes the study area. Section 3 focuses on methodology
and data, presenting the methods used to estimate CO2 emissions
and urban form aspects, the parameter estimation of the econo-
metric model and the data used within the study. Results and dis-
cussion are given in Section 4, and the conclusions and policy
implications of the study are summarised in Section 5.

2. Study area

As sites for rapid urban development and for sprawl, built-up
areaswere considered themost suitable objects of study for estimat-
ing the relationshipbetweenurban formandCO2emissions. As such,
China’s 30 provincial capital cities (that is, all of China’s provincial
cities except Lhasa, an exclusion that was performed due to limited
data), which constitute the fastest growing areas in their respective
provinces, were selected to constitute the study area. Their spatial
distributions are shown in Fig. 1. These cities both maintain a num-
ber of similarities and deviate strongly from each other. On the one
hand, they each have long histories of urban development, large
populations and high GDPs. On the other, they significant differ-
ences exist in their urban spatial patterns and CO2 emissions trends.
These differences reflect their different population densities and
locations, as well as the impact of different economic scales and
development policies. As China’s leading powerhouses in the past
two decades, the 30 Chinese provincial capitals are considered rep-
resentative of the rapid growth witnessed in urban China.

As themost rapidly growing cities in China, the citieswhich com-
prise the study area all suffer from different levels of environmental
pressure, and their CO2 emissions continue to grow due to the rapid
Fig. 1. Spatial distributions of 30 Chines
development of their economies, which in turn has also demanded
vast volumes of natural resources. Despite the fact that urban devel-
opment can lead to increases in the incomes of residents and to the
improvement of people’s living standards, it must also be acknowl-
edged that such growth can also lead to increases in energy con-
sumption and consequently bring about a number of
environmental problems [9,10]. This becomes particularly clear
whenone considers that the total urbanbuilt-uparea in the30cities,
which was approximately 4314.54 km2 in 1990, measured over
8429.14 km2 in 2010, an increase which has not only led to the con-
version of natural ecosystems, farmland and water into urban area,
but has also resulted in many environmental changes, leading to
increased global warming and the urban heat island effect [10,39].
Thus, on the path towards developing low-carbon cities through
the realisation of CO2 emission intensity targets for mitigating cli-
mate change effects, it is necessary to identify the important influ-
encing factors which lie behind the production of CO2 emissions in
fast-growing cities [6]. In addition, a better understanding of this
relationship is also required in order to enable policy makers and
urban planners to curb CO2 emissions while fostering sustainable
urban development. The quantification of the relationship between
urban form and CO2 emissions in the 30 Chinese provincial capitals
which constitute the study area for this research is hoped to con-
tribute to the development of precisely such an understanding.

3. Materials and methods

3.1. Estimating energy-related CO2 emissions

Due to the lack of city-level anthropogenic CO2 emissions statis-
tics in China, it is difficult to acquire precise data officially. Previous
studies have conclusively demonstrated that human activities such
e provincial capital cities in China.



Table 1
Calorific value and CO2 emission coefficients of fuel types.

Type of fossil energy Low calorific value of
energy

CO2 emissions
coefficient

Coal 20,934 kJ/kg 94,600 kg/TJ
Coke 28,470 kJ/kg 107,000 kg/TJ
Crude oil 41,868 kJ/kg 73,300 kg/TJ
Fuel oil 41,868 kJ/kg 77,400 kg/TJ
Gasoline 43,124 kJ/kg 70,000 kg/TJ
Coke oven gas 17,375 kJ/cu m 44,366 kg/TJ
Kerosene 43,124 kJ/kg 71,900 kg/TJ
Diesel oil 42,705 kJ/kg 74,100 kg/TJ
Liquefied petroleum

gas
50,241 kJ/kg 63,100 kg/TJ

Natural gas 38,979 kJ/cu m 56,100 kg/TJ
Electricity – 10,069 (t/B kW h)

522 C. Fang et al. / Applied Energy 158 (2015) 519–531
as the burning of fossil fuels and deforestation are the primary
cause of the increased CO2 concentrations in the atmosphere; in
fact, 87% of all human-produced CO2 emissions have been shown
to come from the consumption of fossil fuels like coal, natural
gas and oil [40]. As such, the use of energy-related statistical data
offers a useful method to estimate emissions and thereby obtain
approximate CO2 emissions data [9,10,40,41]. Using the coeffi-
cients published by the IPCC [36], the calculation of energy-
related CO2 emissions can be undertaken on the basis of the fol-
lowing formula:

CEit ¼
X

Eijt � Fj � aj ð1Þ
where CEit represents the energy-related CO2 emissions of the i-th
city in the t-th year; Eijt denotes the j-th fossil fuels of the i-th city
in the t-th year; Fj is the CO2 emissions coefficient of j-th fossil fuels
Table 2
Remote sensing imagery data sources for extraction of urban built-up area.

Cities 1990

Beijing P123R032_5X19920907
Shanghai P118R038_5DT19890811

P118R039_5X19870518
Tianjin P122R033_5X19930615
Chongqing P127R040_5X19880604

P128R039_5X19880915
Shijiazhuang P124R034_5X19931019
Taiyuan P125R034_5X19900916
Hohhot P126R032_5X19870915
Shenyang P119R031_5X19921013
Changchun P118R030_5X19930907
Haerbin P118R028_5X19890912
Nanjing P120R038_5DT19880705
Hangzhou P119R039_5X19910723
Hefei P121R038_5X19900920
Fuzhou P119R042_5X19890615
Nanchang P121R040_5X19890715
Jinan P122R035_5X19870919
Zhengzhou P124R036_5DT19880514
Wuhan P123R039_5X19910719
Changsha P123R040_5X19931012

P123R041_5X19930825
Guangzhou P122R044_5X19901013
Nanning P125R044_5X19900916
Haikou P124R046_5X19911030
Chengdu P129R039_5X19920816
Guiyang P127R042_5X19931227
Kunming P129R043_5DT19920816
Xi’an P127R036_5X19880823
Lanzhou P130R035_5X19930826
Xining P132R035_5X19960816
Yinchuan P129R033_5DT19910830
Urumchi P142R030_5X19901009

Note: ‘‘P123R032_5X19920907”: path 123, row 32, acquired date: September 7, 1992; ‘‘L5
22, 1992.
(Table 1); and aj is the low calorific value of j-th fossil fuels (Table 1).
According to the energy balance tables derived from the China
Energy Statistical Yearbook, fossil energy is subdivided into ten cat-
egories: coal, coke, crude oil, fuel oil, gasoline, kerosene, diesel oil,
liquefied petroleum gas, natural gas and electricity. Unfortunately,
limited data are available for these categories at the scale of urban
built-up areas. Rather than using the built-up area scale, fossil
energy use data was extracted from China City Statistical Yearbook
(1991, 2001 and 2011) at the municipal district scale. Municipal
districts, which are administrative units used in the China City Sta-
tistical Yearbook and which typically cover built-up areas and their
urban fringes, offer an alternative scale for data collection [42].
Because of different rule-based statistical methods used between
the 1990s, the 2000s and the 2010s, the ten categories of energy
consumption could not be identified completely [43]. Under such
circumstances, the only alternative method for calculating Cit is
through analysis of existing data and by making estimations where
necessary [44]. In this study, C includes the consumption of coal,
gas, electricity, and liquefied petroleum gas. Both the low calorific
value and CO2 emissions coefficient of each fuel type were collected
from the IPCC Guidelines [36].
3.2. Urban forms

In order to characterise the spatial and temporal dynamics of
the urban form of each of China’s 30 provincial capital cities, we
used Landsat Thematic Mapper (TM) and Enhanced Thematic Map-
per (ETM) to identify the boundaries of urban built-up areas (‘‘ur-
ban built-up area” in this paper refers to the fully developed area of
a central city and its suburbs that includes no rural land [44]) for
three time periods: 1990, 2000 and 2010, at a mapping scale of
2000 2010

P123R032_7X19990701 L512303220090922
P118R038_7DT20010703 L511803820090919
P118R039_7X20000614 L511803920090717
P122R033_7X20010901 LT51220332009242
P128R039_7X20010522 LT51280402010223
P128R040_7X20010522 LT51280392010143
P124R034_7X20000507 LT51240342010227
P125R034_7X20000701 LT51250342010266
P126R032_7X20020714 LT51260322009222
P119R031_7X20010811 LT51190312010224
P118R030_7X2000102 LT51180302010153
P118R028_7X20010921 LT51180282010265
P120R038_7DT20011106 L512003820100819
P119R039_7X20001011 LE71190392010264
P121R038_7X20011012 LT51210382009123
P119R042_7X20010304 LT51190422009157
P121R040_7X20000923 LE71210402010278
P122R035_7X20020531 LT51220352009242
P124R036_7DT20010510 L512403620090625
P123R039_7X20020709 LT51230392009249
P123R041_7X20011229 LT51230402009249
P123R040_7X20010924 LT51230412009233
P122R044_7X20000914 LT51220442009306
P125R044_7X20001224 LT51250442009279
P124R046_7X20010729 LT51240462010083
P129R039_7X20001102 LT51290392009083
P127R042_7X20011123 LE71270422010304
P129R043_7DT20001102 L7112904320091111
P127R036_7X20020603 LT51270362009181
P130R035_7X19990718 LT51300352009218
P132R035_7X19990801 LE71320352010211
P129R033_7DT19990812 L7112903320100911
P142R030_7X19990823 LT51420302009206

12303220090922”: L5 = Landsat-ETM5, path123, row 32, acquired date: September
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1:100,000. A total of 99 Landsat TM and ETM imageries (acquired
by Global Land Survey 1990, 2000 and 2010) were applied to
extraction of urban built-up area, including 33 scenes from Landsat
TM for 1990, 33 scenes from Landsat TM for 2000 and 33 scenes
from Landsat-ETM5/ETM7 for 2010. Table 2 shows a detailed sum-
mary of our data sources.

Using the above-mentioned remote sensing imagery database,
we developed an urban built-up area database for China’s provin-
cial capital cities at a spatial scale of 1:100,000, using visual inter-
pretation and vectorisation [45] with technical support from ENVI/
IDL 5.1 software and ArcGIS 10.1 (ERSI) software. A detailed work-
flow of imagery processing and urban built-up area boundary
extractions is shown in Fig. 2. Before engaging in interpretation,
a band composition was implemented in relation to the remotely
sensed images. These images were then geo-referenced using
1:50,000 relief maps. For each TM/ETM scene, at least 20 evenly
distributed sites, selected on the basis of a calibrated image and
relief map, served as Ground Control Points (GCPs), which were
applied in order to correct the image. The Root Mean Squared Error
(RMS error) of geometric rectification was less than 1.5 pixels (or
45 m) [45]. We then used ArcGIS10.1 software in order to identify
the urban built-up area on the computer screen, based on our
understanding of urban spectral reflectance, structure and other
information. Boundaries were then drawn around the urban
built-up areas, and a polygon attribute was added to these in order
to produce the digital map. Finally, we edited and compiled the
vector digital maps and implemented strict quality control. Fig. 3
details the footprints of urban expansion (obtained by using above
methods) of five representative cities in different parts of China.

Urban form can affect economic functions and efficiency and
bring about social impacts in the urban environment, ultimately
Fig. 2. The interpretation workflow of remote sensin
affecting both the design and regulation of the uses of urban space.
Based on previous studies [46–53], we selected ten pattern metrics
to characterise urban form changes: total area (TA), the largest
patch index (LPI), the area-weighted mean shape index (AWMSI),
the area-weighted mean patch fractal dimension index
(AWMPFDI), perimeter area ratio distribution (PARA_MN), the per-
centage of like adjacencies (PLADJ), the patch cohesion index
(COHESION), the aggregation index (AI), the landscape shape index
(LSI) and contiguity (CONTIG). TA equals the sum of urban built-up
areas of all patches of the corresponding patch type; this metric
helps to reveal the process of sprawl in a given urban built-up area.
The LPI indicator equals the area of the largest patch of the corre-
sponding patch type divided by the total landscape area, and rep-
resents the degree of urban dominance in the landscape [54]. The
AWMSI is a robust metric used to describe landscape structure
across spatial scales by calculating the complexity of urban patches
according to their size [55]. The AWMPFDI measures the degree of
irregularity of urban patch shapes, which implies the presence of
unplanned growth in a given urban area [55]. The higher the fractal
dimension index, the more irregular the shape of the urban area.
PARA_MN is a simple measure of shape complexity. The PLADJ is
an absolute measure of the aggregation of an urban landscape.
COHESION measures the physical connectedness of the urban land
patch. Patch cohesion increases as the patch type becomes more
clumped or aggregated in its distribution and hence more physi-
cally connected. The AI is computed simply as an area-weighted
mean class aggregation index. The LSI measures the perimeter-to
area ratio for the landscape. CONTIG indicates the spatial aggrega-
tion of urban patches. Ten spatial pattern metrics were calculated
using FRAGSTATAS 4.2 [56]. To meet the needs of the calculation,
all the vector data for the urban built-up areas were converted to
g imagery for extraction of urban built-up area.



Fig. 3. Landsat TM/ETM imageries show the footprints of urban expansion in Beijing, Shanghai, Nanjing, Kunming and Yinchuan. The images are a composite of Band 5 (Red),
4 (Green), 3 (Blue). Using this composite, bluish violet indicates urban built-up area. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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30 m ⁄ 30 m raster data. Table 3 sets out a more detailed descrip-
tion of the above, including the specific mathematical equations
of each of the metrics.

3.3. Econometric models

A panel data model, which took the period of 1990–2010 into
consideration, was utilised in this study. The panel model was cho-
sen because it has several major advantages over conventional
cross-sectional or time series models [37,38]. For example, panel
data usually has a high power to control individual heterogeneity.
More importantly, it can help reduce the effects of multicollinear-
ity among the variables and increase the degrees of freedom [37].

This study aimed to quantitatively estimate the relationship
between urban form and CO2 emissions in 30 Chinese provincial
capital cities, and as such a CO2 model needed to be built. The
specific equation for that model was as follows:

CEit ¼ bi þ Zituþ li þ eit ð2Þ
where CEit is the CO2 emissions of city i in year t; bi is a scalar coef-
ficient; u is a vector of parameters; li denotes the individual effect,
capturing the idiosyncratic characters of each city; eit denotes the
random error; and Zit is a vector of exogenous variables, including
TA, LPI, AWMSI, AWMPFD, PARA_MN, PLADJ, COHESION, AI, LSI
and CONTIG. All data must undergo natural logarithm transforma-
tion to avoid non-stationarity and heteroskedasticity phenomena
in the time series variables. Because Eq. (3) is a combination form,
several specific regression models needed to be intensified through
the inclusion of different exogenous variables [38]. Generally, if T
denotes the number of time points and K represents the number
of independent variables, the panel data model has to meet the
requirement that T > K + 1.

Before conducting the panel data model, we needed to decide
whether the fixed effects or random effects model should be used.
The fixed effects model is able to intensify the differences between
individuals. Furthermore, it permits correlations between the
exogenous variables Zit and the individual specific effect li; how-
ever, it has relative small degrees of freedom resulting from its
many scalar coefficients. The random effects model allows greater
degrees of freedom, however its high power (when compared to
the fixed effects estimator) is conditional on Zit and li having no
correlated relationship. Whether the model would be accepted
was based on the result of a Hausman test, a test which examines
whether the covariance estimators of u are obviously different
[57].

To solve the stationarity problem, the panel unit root test Levin,
Lin and Chu (LLC) was utilised [58]. A panel unit root test was cho-
sen on the basis of its higher power when compared to the normal
time series and cross section data [38]. Generally, the LLC test is
based on the following autoregressive model [37]:

Dyit ¼ qyit�1 þ
Xkt
j¼1

rjiDyit�1 þ Zituþ eit ð3Þ

where Zit denotes the column vector of exogenous variables (deter-
ministic variables); and u represents the column vector of regres-
sion coefficients. The alternative and the null hypothesis can be
written as follows:

H1 : q < 0
H0 : q ¼ 0

Under the null hypothesis, there is a unit root; under the alter-
native hypothesis, no unit root exists.

4. Results and discussion

4.1. Analysis of energy-related CO2 emissions

The levels of energy-related CO2 emissions in Chinese provincial
capitals were calculated for the selected years using Eq. (1), as
shown in Fig. 4. Fig. 4 demonstrates that CO2 emissions have
increased in all cities in the study area during the studied period,
and the increases witnessed in the second period (2000–2010)
were much larger than those which characterise the first period
(1990–2000). In addition, whilst the annual growth rate for
1990–2000 was 8.56%, from 2000 onwards this growth rate accel-
erated significantly, reaching 9.90% in 2010. In terms of the CO2

emissions produced by each city, Haikou was found to be the
smallest emitter, with its emissions rising from 75.02 thousand
tons in 1990 to 584.42 thousand tons in 2010. In contrast, Shanghai
proved the largest emitter, with its emissions increasing from
3.34 million tons in 1990 to 18.87 million tons in 2010. Fig. 4 also



Table 3
Description of landscape metrics.

Indicators Abbreviation Equation Description

Total area TA TA ¼ Pn
j¼1aijð1=10000Þ aij = area (m2) of patch ij

Largest patch index LPI LPI ¼ maxnj¼1ðaijÞ
TA ð100Þ aij = area (m2) of patch ij

TA = total landscape area (m2)
Area weighted mean shape

index
AWMSI AWMSI ¼ Pm

i¼1
Pn

j¼1
pij

min pij

� �
aij
TA

� �h i
m = number of patch types
n = number of patches of a class
Pij = perimeter of patch ij measured in number of cell

Area weighted mean patch
fractal dimension

AWMPFD AWMPFD ¼ Pm
i¼1

Pn
j¼1

2 lnð0:25pijÞ
lnðaijÞ

� �
aij
TA

� �h i
pij = perimeter of patch ij,
aij = area of patch ij
TA = total landscape area (m2)

Mean perimeter area ratio PARA_MN
PARA MN ¼

Pm

i¼1

Pn

j¼1
ðpij=aijÞ

mn

pij = perimeter (m) of patch ij
aij = area (m2) of patch ij

Percentage of like adjacencies PLADJ
PLADJ ¼

Pm

i¼1
giiPm

i¼1

Pn

k¼1
gik

� �
ð100Þ gii = number of like adjacencies between pixels of class i based

on the double-count method
gik = number of adjacencies between class i and k based on the
double-count method

Patch cohesion index COHESION
COHESION ¼ 1�

Pm

i¼1

Pm

j¼1
P�ijPm

i¼�1

Pn

j¼1
P�
ij

ffiffiffiffi
a�
ij

p
� �

� 1� 1ffiffi
Z

p
h i�1

ð100Þ P�
ij = perimeter of patch ij in terms of number of cell surfaces,

a�ij= area of patch ij in terms of number of cells,

Z = total number of cells in the landscape
Aggregation index AI AI ¼ gii

maxðgiiÞ
h i

ð100Þ gii = number of like adjacencies between class i based on the
single-count method

Landscape shape index LSI
LSI ¼ 0:25

Pm

k¼1
e�ikffiffiffiffiffi

TA
p e�ik = total length of edge in landscape between classes i and k

TA = total landscape area (m2)
Contiguity CONTIG

CONTIG ¼

P x

r¼1
cijr

aij

� �
�1

m�1

cijr = contiguity value for pixel r in patch ij
v = sum of the values in a 3 � 3 moving window
aij = area of patch ij in terms of number of cells
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displays the distribution overlay of CO2 emissions data in the form
of a box chart, with the bottom and top of the box representing the
25th and 75th centiles for the selected years (1990, 2000 and
2010); the corresponding statistical descriptions are shown respec-
tively in Table 4.

Once we had estimated the emissions for each city for the
selected years, it was necessary to perform further analyses (of
emission trends, spatial agglomeration of emissions, etc.).

Fig. 5 reviews the kernel density evolution path of CO2 emis-
sions for the selected years. From Fig. 5, we find that, if the distri-
bution of CO2 emissions can be considered to be highly
concentrated at 1 million tons, it was mainly dispersed from 0.1
t to 3 million tons in 1990. This indicates that the differences in
CO2 emissions evidenced at city level were not particularly large
in 1990. The kernel densities of 2000 and 2010 show that both
the mean and the variance of CO2 emissions have been on the
increase since 1990. In 2010, emissions were distributed from 1
to 4 million tons, with the most concentrated emission reading at
2 million tons.

Fig. 6 plots the distributions of a Moran scatter of CO2 emissions
in Chinese provincial capital cities according to the temporal char-
acteristics of global Moran’s I,1 showing the local spatial correlation
or spatial agglomeration of CO2 emissions geographically. An
increasing trend of the autocorrelation can be clearly observed in
Fig. 6, whereby Moran’s I rises from 0.1784 in 1990 to 0.2779 in
2010 (where all are significant at 95% confidence level via the ran-
domisation assumption). This finding clearly reveals a trend of spa-
tial concentration taking place in Chinese provincial capital cities.
From the viewpoint of scatter distribution, HH and LL clusters consti-
tute the main types of agglomeration seen over the studied period.
4.2. Analysis of urban form aspects

The estimated urban built-up areas of each city are displayed in
Table 5 for the selected years. As indicated in Table 5, the built-up
areas of each city rapidly expanded between 1990 and 2010. In
1 Moran’s I is a local indicator of spatial autocorrelation for the analysis of spatial
clustering.
1990, the smallest total built-up area (Haikou) and the largest total
built-up area (Shanghai) were 14.01 km2 and 502.43 km2 respec-
tively, whereas in 2010 the smallest and largest areas increased
to 50.67 km2 (Xining) and 1037.97 km2 (Beijing) respectively. In
terms of the volume of expansion experienced by the cities that
form the study area, Xining was found to experience the least
expansion, with its area increasing from 37.16 km2 in 1990 to
50.67 km2 in 2010 (an increase of 13.51 km2); Beijing, in contrast,
demonstrated the greatest expansion, with its area increasing from
415.87 km2 in 1990 to 1037.97 km2 in 2010 (an increase of
622.10 km2). From Table 5, we also find that the built-up areas of
cities with large economies and high incomes were much higher
than their counterparts (i.e., the less-developed areas). Fig. 7 dis-
plays the spatial patterns of urban built-up expansion from 1990
to 2010. Fig. 7 clearly identifies the dynamic sprawl path of the
built-up areas in the 1990s, the 2000s and the 2010s.

With the support of pre-identifying urban sprawl indexes and
spatial metrics applied to remotely sensed land cover data, a range
of indicators (such as, TA, LPI, AWMSI, AWMPFD, PARA_MN, PALDJ,
COHESION, AI, LSI and CONTIG) were calculated individually for
each cityusinga computer softwareprogram(FRAGSTATS)designed
to compute a wide variety of landscape metrics for categorical map
patterns. The results of the calculationof these aspects of urban form
indicate significant differences between cities in the changing
trends and magnitudes of the indicators. In order to achieve clear
descriptive statistics, a boxplot (a convenient way of graphically
depictinggroups of numerical data through their quartiles)was gen-
erated. Fig. 8 displays the variation of statistical urban form data
without making any assumptions about the underlying statistical
distribution. The spacing between the different parts of the box indi-
cates the degree of dispersion (spread) and skewedness in the data,
and shows outliers. Form the points distributed in the figure, we can
visualise various L-estimators, notably the interquartile range,
mean, median, minimum and maximum.
4.3. Estimation results of the panel model

Prior to conducting parameter estimations of panel data, the
multicollinearity between regression models should be tested.



Fig. 4. CO2 emissions of provincial capitals with box chart distribution overlay for selected years.

Table 4
Summary statistics of CO2 emissions for selected years.

Variable Units Mean Median Min Max Std. Dev Skewness Kurtosis

CO2 emissions (1990) 104 t 72.877 44.856 7.502 334.39 75.536 1.895 6.297
CO2 emissions (2000) 104 t 165.762 95.249 21.611 902.512 199.266 2.461 8.655
CO2 emissions (2010) 104 t 426.007 208.990 58.442 1925.362 503.910 2.032 6.058

Fig. 5. Kernel density evolution of CO2 emissions for selected years.

Fig. 6. Moran scatter plot of CO2 emissions for selected years. Note: HH means high valu
means low values surrounded by low values; HL means high values surrounded by low
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Table 6 reports the results of correlations among the variables in
this study. As indicated in Table 5, no high correlations existed in
these variables. In addition, the results of the multicollinearity
tests show that multicollinearity among all regression models
was low, with variance inflation factors (VIF) no greater than 10
and condition indexes (CI) less than 30, indicating the independent
variables did not suffer from the problem of severe multicollinear-
ity. On the basis of these results, we were able to proceed in con-
ducting the panel data analysis.

First, the stationarity of the dependent variable CO2 emissions
needed to be tested. A type of panel unit root test, the LLC test,
was utilised. The results from this test showed the variable to be
stationary at the first difference, rejecting the null hypothesis at
5% level of significance. As such, the research could be undertaken
without any specifications in difference. Given the condition that
T > k + 1 and T = 3, the maximum value of k was 1, which implies
that the regression model had at most one explanatory variable.
The explanatory variables were separated into ten regression
es surrounded by high values; LH means low values surrounding by high values; LL
values.



Table 5
Urban built-up areas of 30 Chinese provincial capital cities.

City Built-up area (km2) City Built-up area (km2)

1990 2000 2010 1990 2000 2010

Beijing 415.87 877.80 1037.97 Lanzhou 90.85 92.15 117.86
Changchun 163.93 180.75 279.32 Nanchang 53.16 63.37 136.75
Changsha 83.21 92.75 168.26 Nanjing 169.62 246.87 583.74
Chengdu 138.36 226.22 608.53 Nanning 70.40 128.71 151.83
Chongqing 129.04 165.08 195.54 Shanghai 502.43 680.33 837.39
Fuzhou 75.71 93.46 130.74 Shenyang 218.89 228.80 329.74
Guangzhou 174.47 313.44 414.53 Shijiazhuang 84.77 130.58 151.73
Guiyang 64.96 68.67 78.61 Taiyuan 176.58 221.52 247.44
Harbin 137.40 146.10 190.70 Tianjin 339.14 380.80 542.36
Haikou 14.01 54.03 67.75 Wuhan 220.10 243.81 440.63
Hangzhou 91.76 133.11 256.07 Urumqi 185.17 221.70 245.48
Hefei 93.36 110.49 247.63 Xi’an 149.23 182.74 210.67
Hohhot 85.92 124.19 121.23 Xining 37.16 38.93 50.67
Jinan 111.81 163.32 223.02 Yinchuan 32.67 47.35 84.54
Kunming 91.48 143.82 243.11 Zhengzhou 113.10 163.91 235.29

Fig. 7. Spatial patterns of urban built-up areas of 30 Chinese provincial capital cities.
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models in order to properly estimate the relationship between CO2

emissions and urban form. Since models I–X are static panel mod-
els, they could be estimated using either the fixed effects estimator
or the random effects estimator. Hausman tests were further con-
ducted, with results rejecting the null hypothesis of random
effects, indicating that the fixed effects estimator was suitable for
the ten models developed. Table 7 displays the coefficients esti-
mated from the panel data analysis. These results identify several
associations between urban form and CO2 emissions, thereby sug-
gesting that the nature of the links between urban form and CO2

emissions are in fact discernible at the provincial capital city level
in China. Organised in terms of urban form aspects, we describe



Fig. 8. Box chart of urban form aspects with scatter plot and distribution overlay.

Table 6
Correlation test results.

TA LPI AWMSI AWMPFD PARA_MN PALDJ COHESION AI LSI CONTIG

TA 1.000
LPI �0.003*** 1.000
AWMSI 0.284 *** �0.081*** 1.000
AWMPFD 0.125 *** �0.147*** 0.483** 1.000
PARA_MN 0.326 ** �0.169*** 0.445** 0.410** 1.000
PALDJ 0.426 *** 0.338*** �0.604*** �0.712*** �0.225*** 1.000
COHESION 0.340 ** 0.561** �0.101*** �0.214*** �0.160*** 0.662** 1.000
AI 0.344 *** 0.350*** �0.654*** �0.701*** �0.260*** 0.695** 0.653*** 1.000
LSI 0.242 *** �0.480*** 0.583*** 0.597*** 0.486** �0.717** �0.504** �0.468*** 1.000
CONTIG �0.355*** �0.081*** �0.304*** �0.244*** �0.703** �0.019*** �0.143*** 0.012*** �0.211*** 1.000

Note: All values are taken the natural logarithm.
** Denotes significance at 5% level.

*** Denotes significance at 1% level.
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here only those relationships between urban form and CO2 emis-
sions that were statistically significance at less than 5% level (TA,
COHESION, AI, CONTIG, AWMSI, AWMPFD and LSI).

Model I was used to test the effects of urban expansion on CO2

emissions. The coefficient of TA in logarithmic form was expected
to be positive and the estimation result obtained in relation Model
I was consistent with that expectation. With the implementation of
its ‘‘Reform and Opening-up” policy in the late 1970s, China has
witnessed (and is still witnessing) fast-paced urban development.
Over the past two decades, urbanisation levels in China’s 30
provincial capitals have increased spectacularly. This has resulted
in several effects. Firstly, the expansion of urban areas for living
and infrastructure has reduced vegetation and lead to a decrease
in the size of carbon sinks – an effect which can be expected to
pose negative consequences for carbon storage and result in many
environmental changes such as the urban heat island effect and
global warming. Secondly, rapid urbanisation in these 30 provin-
cial capitals has brought millions of people from rural areas to
cities and towns every year. This migration has led to increases
in the demand for urban energy supplies and the production of a
large volume of CO2 emissions. In addition, the growth of popula-
tion directly has also resulted in tremendous increases in con-
sumption (daily living, working), which accelerate the process of
industrial production and resource consumption, leading to further
growth in CO2 emissions. Thus, unsurprisingly, the findings of this
study support the conclusion that the rapid growth of urban areas
has brought about a corresponding increase in CO2 emissions.

The other six landscape metrics used in this study described
two components of urban form [12]: urban continuity and urban
shape complexity. The landscape metrics belonging to urban con-
tinuity included COHESION, AI and CONTIG; those used to describe
urban shape complexity included AWMSI, AWMPFD and LSI.

Urban continuity denotes the degree to which the urban land-
scape is aggregated and connected. Higher urban continuity means
that urban areas are less scattered, with more continuous and less
interspersed development. The higher the value of urban continuity,



Table 7
Coefficients estimated from panel data analysis.

Model Independent variables Coefficient Constant R-square F-statistic Prob (F-statistic) AIC N

Model I lnTA 1.9680*** �14.304*** 0.8885 15.6765 0.0000 1.6248 90
(0.1544) (1.4923)

Model II lnLPI 0.5297 2.3826 0.5837 2.7570 0.0004 2.9426 90
(1.0212) (4.4688)

Model VI lnPALDJ �0.6372 5.7113*** 0.6955 2.8951 0.0002 2.9138 90
(0.4504) (0.7209)

Model VII lnCOHESION �1.4883** 6.3454*** 0.7141 3.1292 0.0000 1.8667 90
(0.7190) (0.7460)

Model VIII lnAI �0.7999*** 3.6324*** 0.8508 5.9271 0.0000 2.9241 90
(1.2641) (0.5801)

Model X lnCONTIG �2.0580** 4.1680*** 0.8209 3.2210 0.0000 2.8489 90
(0.8338) (0.2348)

Model III lnAWMSI 0.7876*** �3.5645*** 0.7650 2.4024 0.0000 2.3706 90
(1.1161) (0.5325)

Model IV lnAWMPFD 0.9617*** �4.4223*** 0.8246 5.1750 0.0000 2.5292 90
(1.7383) (0.8004)

Model V lnPARA_MN 0.1971 3.7132*** 0.5934 2.8705 0.0002 2.9188 90
(0.1515) (0.7646)

Model IX lnLSI 0.9889** �4.5631*** 0.8288 3.2471 0.0000 2.8438 90
(0.3902) (0.7411)

Note: Robust standard errors in parentheses for models I to X.
** Denotes significance at 5% level.

*** Denotes significance at 1% level.
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the less fragmented an urban area is. Urban development with high
aggregation and connectedness should lead to shorter commuting
distance between residences and places of work. As described pre-
viously, the variable COHESION estimates the connectedness of
urban areas; AI and CONTIG are measures of the aggregation of
urban areas. The lower the values of COHESION, AI and CONTIG,
the more compact the development pattern of an urban area is.
From Table 7, we find that the variables COHESION, AI and CONTIG
all demonstrated significant negative correlations with respect to
CO2 emissions. These results are in line with the results of a number
of other recent studies. For instance, Bereitschaft and Debbage [12]
employed a similarmeasure in their study and found thatmore con-
tiguous urban areas experienced, on average, significantly lower
levels of CO2. Similarly, Ou et al. [10] also found urban expansion
within an aggregated and continuous pattern to positive correlate
with the reduction of CO2 emissions. In addition, using Beijing as
an example, Wang et al. [22] found that a more decentralised urban
form is conducive to the increase of transport-related CO2 emis-
sions. The results of similar studies have also demonstrated that
more compact urban areas can lead to less use of private automo-
biles, shorter travel distances, a higher efficiency of city operation,
higher urban land-use intensity and less consumption of energy
resources. The findings of this study indicate that a compact and
continuous urban area is highly beneficial for fast-growing cities,
in order for them to reduce CO2 emissions and realise urban sus-
tained development. The results are also useful for urban planners,
assisting them in identifying effective strategies for low-carbon
urban planning and spatial optimisation.

Urban shape complexity was utilised in this study in order to
estimate the potential links between special attributes (for
instance, shape of boundary or landscape) of urban form and CO2

emissions. Urban shape complexity provides a measure of the reg-
ularity or the ‘‘jaggedness” of the shape of an urban boundary. In
general, the higher the value of shape complexity is, the more
irregular the urban landscape is. Less compact urban landscapes
with highly complex, irregular boundaries can be expected to
increase the time and distance of common commuting. As indi-
cated in Table 7, the variables AWMSI, AWMPFD and LSI were
found to exert significant positive impacts on CO2 emissions.
AWMSI is used to reflect the landscape structure by calculating
the complexity of urban patches according to their size. AWMPFDI
measures the irregularity of urban patches’ shapes, which implies
the unplanned growth of an urban area. The shape of the urban
area will become more irregular if the fractal dimension index
increases. LSI can be interpreted as a measure of the overall geo-
metric complexity of the landscape. The results of estimating
AWMSI, AWMPFD and LSI indicate that CO2 emissions increased
as the urban landscape within these 30 provincial capital cities
exhibited more complex and irregular spatial patterns. The main
reason for this phenomenon may be that irregular urban land-
scapes significantly increase the number and duration of automo-
bile trips by increasing the movements of people from living areas
to the working areas. Given the above, the study identified a signif-
icant association between urban shape complexity (which indi-
cates more complex urban spatial patterns) and CO2 emissions.

5. Conclusions and policy implications

Global warming is an indisputable fact, and it has become an
inevitable threat to our lives and environment. Further, it is urban
areas that are primarily responsible for the rising temperatures
resulting from the effects of today’s high levels of CO2 emissions
[59–62]. Currently, it is unanimously recognised that urban form
can strongly impact on a fast-growing city’s contribution to global
climate change through the production of CO2 emissions [10], and
as such, it is clearly necessary to undertake appropriate strategic
spatial planning and urban design measures in order to reduce
CO2 emissions and thereby address the anticipated impact of glo-
bal warming. Despite this urgent imperative, existing literature
engaging in the task of quantifying the impacts of urban forms
on CO2 emissions is limited. In order to deal with this deficiency,
this study has aimed to explore the nature of links between urban
form and CO2 emissions using panel data for 30 provincial capital
cities in China, remotely sensed data, and socioeconomic data from
1990 to 2010.

In this study, we calculated CO2 emissions for the urban areas of
30 provincial capital cities in China taking the period 1990–2010
into consideration, and then proceeded to identify the built-up
area of each city using remotely sensed images. In addition, quan-
titative indicators relating to urban form were selected and quan-
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tified using spatial (landscape) metrics for the urban built-up areas
of each provincial capital city. Panel data analysis was subse-
quently utilised in order to estimate the associations between
urban form and CO2 emissions.

From the analysis of CO2 emissions, we found the emissions for
all the cities to have increased during the study period, and that
regional inequality in CO2 emissions among provincial capital
cities also increased (albeit gradually) from 1990 to 2010. In addi-
tion, on the basis of results obtained using global Moran’s I, the
study revealed an increasing trend towards autocorrelation (spa-
tial dependence) taking place in Chinese provincial capitals. The
urban areas of each city were also shown to have undergone rapid
expansion from 1990 to 2010, with significant differences being
presented in terms of both the character and magnitude of changes
evident in the urban form of each city.

Parameter estimations made using the panel data model indi-
cated that the individual variable coefficients exhibited important
but different impacts with respect to their effect upon CO2 emis-
sions. In order to obtain a clearer analysis, ten indicators relating
to urban forms were initially classified in accordance with three
key aspects [12]: urban expansion (TA), urban continuity (COHE-
SION, AI and CONTIG) and urban shape complexity (AWMSI,
AWMPFD and LSI). Urban sprawl was found to inevitably acceler-
ate the increase of CO2 emissions. This is because, on the one hand,
the growth of urban areas leads to a reduction of carbon sinks and
an increase in resources consumption, and, on the other, it incites
millions of people to move from rural areas moved to cities and
towns across China every year through rapid urbanisation pro-
cesses. This migration and the lifestyle changes it necessitates lead
to an increase in CO2 emissions. Urban continuity (high COHESION,
AI and CONTIG) was found to be negatively correlated with CO2

emissions, indicating that an aggregated and continuous urban
development pattern can in fact help reduce CO2 emissions. Con-
versely, urban shape complexity (high AWMSI, AWMPFD and LSI)
was found to exert a positive influence on CO2 emissions, meaning
that fragmented or irregular urban areas (and patterns of land use)
contribute to the increase of CO2 emissions.

The findings of this study represent a contribution to the exist-
ing literature and suggest a series of meaningful theoretical and
policy implications. The study found that, given the significant con-
tribution urban areas make to global climate change, the impact
that different urban form patterns exert in relation to CO2 emis-
sions intensifies in contexts of rapid urbanisation. The results of
this study clearly point out that individual urban form indicators
exert important but different influences in relation to CO2 emis-
sions. In order to formulate effective emission-reducing policies,
in the future urban planning practice should consider the impacts
of different urban form patterns on CO2 emissions. It is, however,
also recognised that cities are required to make substantial contri-
butions to economic development, and that steady and fast eco-
nomic growth must always be the primary goal of Chinese
decision makers. As such, a prerequisite to realising emission
reduction targets must be the maintenance of economic develop-
ment, characterised by gross domestic product (GDP). Given these
conditions, the Chinese government faces the significant challenge
of both reducing urban CO2 emissions while also maintaining eco-
nomic growth in cities where rapid development is still necessary
and important. On the basis of previous research, we now know
that reducing energy use and improving energy efficiency are the
most effective measures to reduce CO2 emissions. However, whilst
energy use is the direct driving force behind economic develop-
ment in China’s current stage of development – and it is thus not
the most feasible alternative to reduce CO2 emissions at the cost
of sacrificing economic growth in the future [6,9,10] – it must also
be recognised that energy technology equipment and policy man-
agement are both still relatively backward present. Moreover, a
bottleneck still exists in terms of technology and money for energy
conservation and emission mitigation [63]. As such, in addition to
reducing energy use and improving energy efficiency, the results of
this study support the design of rational urban form through spa-
tial planning and urban management, and indicate that such mea-
sures may in fact constitute an effective alternative in addressing
the issue of emission reductions in relation to Chinese cities. In
support of such a development, a better understanding of the
quantitative relationships between urban forms and CO2 emissions
is important and indeed necessary for Chinese policymakers at var-
ious levels (both central and local) when formulating future urban
development plans. We identify the major results of the presented
study, and propose a three-pronged strategy to get Chinese cities
onto the low-carbon pathway. First, China must control the rapid
expansion of major cities. Under the context of rapid urbanisation,
Chinese cities should increase the green areas and, in turn, increase
carbon sinks. Urban sprawl incites millions of people to move from
rural areas to cities and towns across China every year. Thus, it
should also make more effort to improve the public low-carbon
awareness, strengthen the generalisation of a low-carbon econ-
omy. Second, Chinese cities should increase urban compactness
to mitigate CO2 emissions. According to our conclusions, lower
CO2 emissions level can be achieved through cities that are more
compact. However, various environmental problems resulting
from increased compactness may appear when public service
investment is limited and the income distribution system is dis-
torted. Thus, a key focus should be that policy should identify an
optimum degree of urban compactness that, on the one hand, will
prevent disadvantages associated with overcrowding, and, on the
other, mitigate the CO2 emissions effectively. Third, Chinese cities
should optimise the patterns of land use because of the fragmented
or irregular urban areas contribute to the increase of CO2 emis-
sions. Urban planners should consider the urban shape complexity
when formulate future urban development strategies. Shape com-
plexity (perimeter-to-area ratio) can be interpreted as the ‘‘jagged-
ness” of the urban boundary as well as the porosity (i.e., the
intermixing of urban and nonurban land cover) of the urban land-
scape. Therefore, decrease shape complexity when controlling
urban development can reduce urban CO2 emissions effectively.
Ultimately, this knowledge will allow them to address emission
reductions and to achieve more sustainable economic growth
[64]. Based on the analysis set out in this paper, the empirical find-
ings of this study hold important implications for action on the
path towards developing low-carbon cities in China.
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