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Abstract
Objectives: To discuss the environmental and lifestyle determinants of water
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balance in humans and identify the gaps in current research regarding water
use across populations. Methods: We investigated intraspecific variation in
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populations measured using either dietary survey or isotope tracking. We also
used published data from a broad sample of mammalian species to identify the
interspecific relationship between body mass and water turnover.

Results: Water facilitates nearly all physiological tasks and water turnover is
strongly related to body size among mammals (r2=0.90). Within humans,
however, the effect of body size is small. Instead, water intake and turnover
vary with lifestyle and environmental conditions. Notably, despite living physi-
cally active lives in conditions that should increase water demands, the avail-
able measures of water intake and turnover among small-scale farming and
pastoralist communities are broadly similar to those in less active, industrial-
ized populations.

Conclusions: More work is required to better understand the environmental,
behavioral, and cultural determinants of water turnover in humans living
across a variety of ecosystems and lifestyles. The results of such work are made
more vital by the climate crisis, which threatens the water security of millions

around the globe.

1 | INTRODUCTION Medicine [IOM], 2004; Manz & Wentz, 2005; Roncal-

Jimenez, Lanaspa, Jensen, Sanchez-Lozada, & Johnson,

Water is the most important nutrient for life. It provides
structure and transport throughout the body, facilitates
digestion and metabolic reactions, and aids in our ability
to thermoregulate (Sawka, Cheuvront, & Carter, 2005).
Constituting over half of our body mass, water is by far
the largest component of the human body (Shimamoto &
Komiya, 2000). Deprived of water, humans experience rapid
declines in muscular and cognitive function. Prolonged
dehydration is associated with a number of chronic dis-
eases, including urolithiasis, urinary tract infection, kidney
disease, and cancers of the bladder and colon (Institute of

2015; Sawka et al., 2005).

Despite the importance of water, there have been few
studies of water turnover in nonindustrialized farming or
foraging societies. The IOM (2004) has established ade-
quate intakes (AI) with data derived from numerous
studies, but the supporting research has focused dispropor-
tionately on water turnover in industrialized, economically
developed settings. Daily life in small-scale foraging and
farming communities is often characterized by high levels
of physical activity, exposure to the weather, and scarcity
of safe water. Furthermore, cultural practices and dietary
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differences can affect water intake. The effects of tempera-
ture, physical activity, and altitude have been investigated
(IOM, 2004), but most of this work has been done with
Westerners in experimental studies or expedition condi-
tions (eg, high altitude trekking or military operations).
Conversely, research on water turnover during daily life
has often neglected to integrate environmental and behav-
ioral factors.

In this article, we review the physiology and allome-
try of water turnover in humans and examine its anthro-
pometric, ecological, and cultural determinants. Our
objective is to review established determinants of water
turnover, discuss what is known regarding water turn-
over in small-scale foraging and farming societies, and
identify remaining gaps in our understanding of human
water turnover.

2 | PHYSIOLOGY OF WATER

Water serves a variety of essential physiological roles in
humans. Functionally, water provides structure, lubrica-
tion, and transport, aids in thermoregulation, and serves
as a primary medium for chemical reactions, without
which nearly all the systems of the body cannot properly
function (H&ussinger, 1996; Kleiner, 1999). Water inges-
tion is also necessary to digest food (Adolph, 1933; Engell,
1988). Water restriction in humans and other animals
leads to a corresponding reduction in food intake (Engell,
1988), and prolong restriction can result in negative energy
balance and weight loss (Burgos, Senn, Sutter, Kreuzer, &
Langhans, 2001).

The body water pool can be divided into two compo-
nents, intracellular fluid (ICF), which constitutes about
two-thirds of total body water, and extracellular fluid
(ECF), which constitutes about one-third (Sawka et al.,
2005). ECF can be further segregated into its constituent
parts, which include interstitial fluid, intravascular fluid,
and transcellular fluid (Jéquier & Constant, 2010).
Together, ICF and ECF facilitate key physiological func-
tions, such as providing structure for cells and tissues
throughout the body, as water is by far the largest compo-
nent of cellular fluid (Shimamoto & Komiya, 2000). Cell
hydration provided though ICF maintains necessary vol-
umes for cells to function properly and survive. Impor-
tantly, variations in cell volumes of certain tissues can
also provide important signaling to metabolism and gene
expression. For example, variation in the rate of liver cell
swelling can produce a wide variety of effects, such as
protein and glucose synthesis, lactate uptake, urea syn-
thesis, and others (Hdussinger, 1996).

ECF also provides critical structure for the body. The
primary components of ECF, interstitial fluid and

plasma, provide support and vascular volume to the cir-
culatory system and organ systems. Structurally, the
water in ECF also serves to provide lubrication at joints
and within the digestive and respiratory tracts, and shock
absorption for the brain and spinal cord through cerebro-
spinal fluid (Jéquier & Constant, 2010).

While ICF aids in signaling cellular chemical reactions
through volumetric change, water also serves as an essen-
tial medium for chemical reactions in the body, with all
chemical reactions occurring in the ICF (Shimamoto &
Komiya, 2000). Water is also an important reactant and
resultant of metabolic processes. For example, the citric
acid cycle (Krebs cycle), which is essential to nutrient
catabolism and energy production, requires water in order
to produce energy in the form of ATP (adenosine triphos-
phate). The citric acid cycle also produces NADH (nicotin-
amide adenine dinucleotide) and hydrogen ions required
for the main process of energy production, oxidative phos-
phorylation. As a final step of oxidative phosphorylation
via electron transport chain, oxygen receives electrons, for-
ming “metabolic water” (Widmaier, Raff, & Kevin, 2008).
Due to the nature of water as an excellent solvent (it is
sometimes referred to as the universal solvent), water is an
important component in the hydrolysis of macronutrients,
which allows for the breakdown of carbohydrates, pro-
teins, and lipids into digestible components (Jéquier &
Constant, 2010).

Body water, particularly ECF, serves as the primary
medium through which nutrients and waste products are
transported throughout the body, which maintains
homeostatic conditions within cells (Jéquier & Constant,
2010). Blood plasma, a type of ECF that is mostly made up
of water, transports oxygen required for metabolism from
the lungs, and the byproduct of that metabolic process,
carbon dioxide, to the lungs for exhalation. Blood plasma
also serves as transport for hormones, glucose, and other
nutrients, while transporting waste to the liver and kid-
neys for processing and excretion, as well (Shimamoto &
Komiya, 2000).

The ability to maintain body temperatures within a
homeostatic range in a variety of environments is enabled
both by a number of physiological mechanisms involving
body water and its high heat capacity (Jéquier & Constant,
2010). This high heat capacity buffers the body against
internal temperature changes when in hot or cold environ-
ments. The high heat capacity of water makes vasodilation
and vasoconstriction effective physiological strategies for
thermoregulation by changing rate of conductive heat trans-
fer with the external environment (Widmaier et al., 2008).

In many primates and other mammals, water is also
used for thermoregulation via sweating, which is one of
the most effective mechanisms by which the body can cool
itself (IOM, 2004). Humans have evolved a far greater
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capacity to sweat than other primates, with eccrine sweat
gland densities that are 10 times higher than those of
chimpanzees and macaques (Carrier, 1984; Kamberov
et al., 2018; Lieberman, 2015). The remarkable human
capacity to sweat is thought to reflect selection for thermo-
regulation in hot climates and when engaging in high
levels of physical activity (Carrier, 1984; IOM, 2004;
Kamberov et al., 2018; Lieberman, 2015; Popkin, D'Anci, &
Rosenberg, 2010). When sweat is secreted onto the skin
and is vaporized it transfers heat from the body to the
environment through evaporative cooling (Jéquier & Con-
stant, 2010; Lieberman, 2015; Sawka, 1992). The heat of
vaporization of a single gram of sweat at 30°C is 2.43 kJ,
which results in a substantial thermal change at the skin
(Wenger, 1972). The ability to cool the body through
sweating is mediated, in part, by environmental variables
like temperature and humidity. Both can affect the evapo-
ration rates, with hotter climates eliciting higher rates of
sweating to cool the body, and higher humidity eliciting
higher rates of sweating as water vapor in the air can
stymy evaporation and its cooling effect (IOM, 2004).
These phenomena are can be observed in the sweating
rates of humans exercising in hot, humid environments vs
cool, dry environments (Figure 1) (Sawka, 1992).

3 | WATER BALANCE

Given the importance of water across a number of physi-
ological tasks, prevention of dehydration through the reg-
ulation of body water is incredibly important for daily
functioning and survival. In adult humans and other
mammals, body water is tightly maintained near 73% of
fat free mass, which generally corresponds to ~60% of
total body mass in humans (Wang et al., 1999). The water
content of fat free mass is somewhat higher in children;
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FIGURE 1 Approximate sweating rates under varying activity
levels and environmental conditions. Adapted from Sawka (1992)

it can exceed 75% in newborns and steadily declines
through childhood and adolescence to adult values (IOM,
2004). Maintaining the body water pool requires balancing
water gain (influx) and loss (efflux) each day. The move-
ment of water through the body is variably known as
water turnover, water flux, or water turnover. In humans,
most water gain comes from food and drink. Water is also
formed in aerobic respiration, adding to water gain, and a
negligible amount of water is absorbed through the skin
(transcutaneous influx) or inhaled (inspired influx;
Figure 2). Most water is lost via urine and “insensible”
water loss, the water vapor exhaled or lost from the skin
without sweating. Fecal loss is generally small. Sweat pro-
duction is a minor avenue of water loss for sedentary
populations in temperate or climate-controlled settings but
can be significant in hot climates and with high levels of
physical activity (Lieberman, 2015).

Homeostatic control of water and mineral balance
results from intracellular and extracellular mechanisms
that regulate physiological thirst and urine production in
response to water deficits. As body water is lost, osmotic
pressure causes water to move from intracellular spaces
into extracellular spaces. This exchange results in a
decrease of cellular volumes that triggers a neuroendo-
crine thirst response. Water deficits also increase produc-
tion of the hormone vasopressin, which increases water
permeability in the renal collecting ducts to recoup water
and reduce urine volume (European Food Safety Author-
ity Panel on Dietic Products, Nutrition, and Allergies,
2010; Widmaier et al., 2008). Lower urine volume results
in higher concentration of solutes. Consequently, hydra-
tion status can be assessed through the measurement of
urine osmolality, which is a measure of the concentration
of dissolved particles in solution, or urine specific gravity,
which is a measure of the density of urine relative to
water.

Water Gain Water Loss
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Inspired &
Transcutaneous 0.2

Drink 2.0 Insensible 7.2

Water 1.0
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FIGURE 2
an industrialized population. Body water is 73% of fat free mass, or

Schematic of water balance for an adult human in

40 L for the 55 kg fat free mass adult depicted here. Approximate
water gains and losses (L/d) are given in italics (see Raman et al.,
2004). Met. refers to metabolic water produced from aerobic
respiration
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Usually, body water volume is tightly controlled. When
water balance cannot be regulated properly, the resulting
overhydration or dehydration can lead to serious adverse
effects. Overhydration, also called hyperhydration or water
toxemia, can lead to dangerously low concentrations of
salt and electrolytes in the ECF, a potentially fatal condi-
tion known as hyponatremia (Hoorn & Zietse, 2017).
Dehydration is far more common, and its effects vary with
the severity of water loss. Mild dehydration is defined by a
1%-2% decrease in body weight due to fluid loss (Kleiner,
1999). This level of dehydration can result in slight impair-
ments to cognitive functioning and physical performance
(IOM, 2004; Jéquier & Constant, 2010; Shimamoto &
Komiya, 2000; Popkin et al., 2010; Manz, Johner, Wentz,
Boeing, & Remer, 2012). Severe dehydration, defined as a
>3% loss in body weight due to fluid loss by Kleiner
(1999), can result in further deficits in physical and cogni-
tive ability, as well as heat exhaustion, which can be life
threatening without proper treatment. Prolonged periods
of even mild dehydration can detrimentally affect metabo-
lism and may increase the risk of chronic disease
(Armstrong & Johnson, 2018).

Despite previous work demonstrating negative physi-
cal effects of even modest dehydration, some work has
reported high levels of body water loss among elite ath-
letes during competition (Beis, Wright-Whyte, Fudge,
Noakes, & Pitsiladis, 2012; Goulet, 2012). Beis et al.
(2012) found an average body mass loss of 8.8% =+ 2.1%,
ranging between 6.6% and 11.7%, among 10 marathon
runners across 13 marathons. Faster runners often had
more severe dehydration; the winner of the 2009 Dubai
marathon lost 9.8% of his body mass (Beis et al., 2012).
These findings run counter to those of Cheuvront and
others (eg, Cheuvront & Montain, 2017; Cheuvront,
Montain, & Sawka, 2007; King, Cooke, Carroll, & O'Hara,
2008; Maughan, Shirreffs, & Leiper, 2007), who have
pointed out that changes in body mass during competi-
tion reflect fuel oxidation as well as water loss. Thus,
body mass changes during competition will overestimate
water loss unless one accounts explicitly for energy
expenditure (Cheuvront & Montain, 2017). Isotope track-
ing techniques provide an alternative method for measur-
ing water turnover during competition and other intense
activity (eg, Ruby et al., 2015), and may be preferable to
calculating water loss from mass changes alone.

4 | METHODS FOR MEASURING
WATER TURNOVER

There are two general approaches for measuring
24-hours water turnover in human populations. The
most common method is 24-hour dietary recall surveys

or interviews, in which the subject lists the types and
quantities of food and beverage consumed over the
recall period (Athanasatou, Malisova, Kandyliari, &
Kapsokefalou, 2016; Berti & Leonard, 1998; Kant,
Graubard, & Atchison, 2009; Laksmi et al., 2018; Manz
et al., 2012; Rosinger & Tanner, 2015; Tani et al., 2015;
Wutich, Rosinger, Stoler, Jepson, & Brewis, 2019). Sev-
eral instruments are available for this purpose. The
advantage of surveys and interviews is that they are
inexpensive and can be implemented in large samples
with relative ease. For example, the US NHANES survey
regularly collects 24-hour recall data on thousands of
adults that can be used to calculate water turnover (eg,
Rosinger, Lawman, Akinbami, & Ogden, 2016). The
main limitation of dietary recall is the potential for error
and bias, particularly underreporting of intake, in complet-
ing the surveys (Johansson, Wikman, Ahrén, Hallmans, &
Johansson, 2001; Orcholski et al., 2015). However, multi-
pass methods have been shown to reduce these errors
(Conway, Ingwersen, & Moshfegh, 2004).

Isotope tracking provides a more direct measure of
water turnover in free-living subjects. Subjects drink a
dose (typically ~5-10 mL, depending on body size) of
water in which the hydrogen atom is in the form of the
isotope deuterium. This deuterated water quickly dif-
fuses throughout the body water pool. The isotope
enrichment of the body water pool is highest after dos-
ing, then depletes as enriched water is excreted and
replenished with unenriched water from the diet. The
rate of isotope depletion in the body water thus gives
the rate of water loss. Subjects provide two or more body
water samples (urine, blood, or saliva) over the subse-
quent 7 to 14 days, and the change in deuterium enrich-
ment in the samples over time is used to calculate the
rate of water loss (L/d) from body water pool. Deute-
rium tracking is considered the gold standard for mea-
suring water turnover precisely and accurately (IAEA,
2009), and the method is relatively easy to deploy in
field settings (eg, Christopher et al., 2019; Kashiwazaki
et al., 2009; Raman et al., 2004), but it is considerably
more expensive than surveys or interviews. Further,
water turnover calculated from deuterium depletion
includes all sources of water gain and loss, and thus can-
not distinguish, for example, water gained through food,
drink, or metabolic water formation.

Using two isotopic tracers, deuterium and oxygen-
18, an approach known as the doubly labeled water
(DLW) method, enables researchers to calculate daily
energy expenditure (kcal/d) as well as water turnover
(IAEA, 2009). The measure of daily energy expenditure
provided by DLW can be used to calculate metabolic
water production (eg, Johnson et al., 2017; Raman
et al., 2004). Daily energy expenditure can also be used
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to calculate the amount of food eaten and, if the compo-
sition of the diet is known, to estimate water consumed
as food. Water intake through beverages can then be
estimated by subtracting metabolic water and the water
from food from total water turnover. Johnson et al.
(2017) have used this approach to validate a 7-day fluid
intake survey. Like deuterium tracking, the DLW
method is relatively easy to use in the field (eg, Christo-
pher et al., 2019; Kashiwazaki et al., 2009; Pontzer
et al., 2015). However, it is more expensive than using
deuterium alone due to the considerable expense of
oxygen-18 enriched water.

5 | INTERSPECIFIC COMPARISON
Interspecific comparisons of water turnover provide a
comparative, evolutionary framework for understanding
human water physiology. Indeed, a number of ecological
changes throughout hominin evolution, including persis-
tent hunting and life in a savannah environment, are
thought to have shaped human water physiology (eg,
Carrier, 1984; Lieberman, 2015; Wheeler, 1992). We com-
pared water turnover measured via isotope depletion in
n = 458 US adults (Raman et al., 2004) to water turnovers
measured in other mammals using similar methods
(Haggarty et al., 1998; Munn et al., 2012; Nagy et al.,
1990; Riek et al., 2007; Williams et al., 2001). On a log-log
plot of water turnover against body mass, humans (both
men and women) fall very near the allometric trendline
(Figure 3). Human water turnover is unremarkable for a

log,, Water Turnover

FIGURE 3 Water throughput
(L/d) as a function of body mass
(kg) among mammals. Humans (female, -2

red, n = 207; male, blue, n = 251) fall

very near the allometric scaling for o
mammals. Human values derived from
Raman et al. (2004). Nonhuman
mammal values derived from Munn

et al. (2012), Williams et al. (2001), Riek
et al. (2007), Nagy et al. (1990), and
Haggarty et al. (1998)

-3 N-

O Bat
O Carnivore ® Human (Male)

mammal of our body size. This result is somewhat sur-
prising given physiological adaptations, like our
increased ability to thermoregulate via the evaporative
cooling of sweating and oronasal breathing during
intense physical activity (Lieberman, 2015), that might be
expected to increase human water requirements.

Body mass is a strong predictor of water turnover
across a broad size range of mammalian species. This
relationship collapses when comparing water use
among people and populations, however. For example,
in the study of US adults by Raman et al. (2004), body
mass was correlated with water turnover in men but
not women. Rosinger et al. (2016), using a much larger
(n = 9601) sample of US adults, reported higher self-
reported water intake (but poorer hydration status) in
men and women with greater body mass and body
mass index. However, the effect of body mass on water
turnover was relatively small: mean body mass for the
obese cohort was 59% more than the underweight/nor-
mal weight cohort but their mean water intake was
only 8% greater (Rosinger et al., 2016). Due to the weak
effect of body size on turnover, other factors predomi-
nate in comparisons across populations. For example,
for the cohorts with available body masses in the top
portion of Table 1 (excluding special cases such as ath-
letic competition), mean body mass is not correlated
with water turnover (df = 15, ¥ = 0.08, P = .76, ordi-
nary least squares regression for all adults). Results are
similar (#* < 0.01) when male and female cohorts in
Table 1 are analyzed separately. The poor predictive
power of body size in estimating water turnover

y =0.8196x — 0.8799, r2 = 0.8972
vV df =40, p=<2.2e®
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log,, Body Mass
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underscores the importance of understanding ecological,

behavioral, and cultural influences on human
water use.
6 | POPULATION VARIATION

Environmental factors (ie, temperature, humidity, seasonal
variability, and altitude), as well as behavioral factors such
as the type, intensity, and duration of physical activity, can
alter water turnover (Anand & Chandrashekhar, 1996;
Fusch et al, 1996; IOM, 2004; Shimamoto & Komiya,
2000). Few studies have attempted to include all of these
factors in an analysis of water turnover. Instead, most stud-
ies have focused on one or two contributing variables. For
example, studies investigating the effects of temperature
have shown 50% to 100% greater water turnover for individ-
uals living in hot, tropical climates (Singh et al., 1989). Tani
et al. (2015) analyzed dietary records for n = 242 Japanese
adults and found daily water intake was 9% higher in the
summer, an effect they attributed to higher temperatures
(humidity had no effect in their models). Cold, dry air can
also increase insensible water loss (Freund & Young, 1996)
and thus may contribute to greater water demands.
Physical activity increases water turnover, particularly
when sweating to thermoregulate (Leiper et al., 1996,
2001; Ruby et al., 2003; Sawka et al., 2005; Shimamoto &
Komiya, 2003). Sweating rates can exceed 3 L/h during
strenuous activity in hot conditions (Figure 1, IOM, 2004;
Lieberman, 2015; Sawka, 1992). Leiper and colleagues
have found water turnovers to be ~1.2 L/d higher for phys-
ically active men (Table 1) compared to sedentary men
(Leiper et al., 1996, 2001). These findings are consistent
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with comparisons of age-matched endurance runners and
sedentary men, which found that the endurance runners
had an increased water turnover of ~1 L/d (Shimamoto &
Komiya, 2003). In a study by Ruby et al. (2003), water
turnovers were calculated from eight male and nine
female wildfire firefighters involved in firefighting activi-
ties. The extreme conditions and high physical demands
resulted in water turnovers that were ~2 times greater
than what has been reported for a US reference population
(Raman et al., 2004; Ruby et al., 2003).

While the individual effects of activity, heat, and
humidity on water turnover are known (IOM, 2004), the
potential interaction of anthropometrics, environment,
and behavior on water physiology hinder our ability to
model human water needs reliably across populations
that vary in ecological, behavioral, and dietary factors.
Our ability to predict water turnover during daily life for
diverse populations globally is further constrained by a
lack of diversity among the populations sampled. Most
data on human water intake or turnover come from stud-
ies of US or European populations. Two of the largest
studies on water turnover come from the US (n = 251
men, n = 207 women) (Raman et al., 2004) and Germany
(n = 639 men, n = 889 women) (Manz et al., 2012). By
contrast, relatively few studies have collected water turn-
over or intake data from small-scale, nonindustrialized
populations. The list of small-scale populations for whom
water turnover data has been collected includes the
Shuar forager-horticulturalists of Amazonian Ecuador,
the Tsimane forager-horticulturalists of lowland Bolivia,
the Aymara agropastoralists of the Bolivian highlands,
and a community of Mestizo peoples living in the high-
lands of Ecuador (Figure 4; Table 1). Data from

FIGURE 4 Mean daily water
turnovers for men and women across
Lifestyle

small-scale and industrialized
g Forager-Horticulturalist

Agro astoralist

RuraI/Urban
rban

Industrialized

populations. US measures were
derived from two studies: "Raman et al.
(2004) and *Kant et al. (2009).
Measures for the Shuar (Christopher
etal., 2019), Aymara (Kashiwazaki
et al., 2009), Kenya (Keino et al., 2014),
US' (Raman et al., 2004), and France
(Blanc et al., 1998) were calculated
using the deuterium depletion method.
Tsimane (Rosinger & Tanner, 2015),
Mestizo (Berti & Leonard, 1998),
Indonesia (Laksmi et al., 2018), Greece
(Athanasatou et al., 2016), Japan (Tani
etal., 2015), Germany (Manz et al.,

& 2012), and US* (Kant et al., 2009) data

& were collected via nutritional survey.

Error bars indicate +1 SD
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developing regions include a sample of rural and urban
women living in Kenya, and a large-scale fluid intake
study of several Indonesian populations (Keino et al.,
2014; Laksmi et al., 2018).

Large-scale studies of industrialized populations pro-
vide information on the water requirements for mostly
sedentary individuals living in temperate climates with
access to climate control and abundant sources of clean
water. Mean values of water turnover for industrialized
populations, such as those in the United States and Ger-
many, typically lie near the Al values set by the U.S. IOM
(2004), which suggest intakes of 3.7 and 2.7 L/d for men
and women, respectively. Water throughout varies widely
for individuals within these populations. In the large US
sample by Raman et al. (2004), water turnover ranged
from 1.4 to 7.7 L/day for men and 1.2 to 4.6 L/day for
women. Greater requirements would be expected for
physically active individuals or those living in hot or
high-altitude environments that elicit higher rates of
water turnover (IOM, 2004).

The limited data available from small-scale societies
indicates that water turnover in these populations is often
more similar to industrialized populations than expected.
For example, average water turnovers among Kenyan
women living in both urban and rural settings and physi-
cally active Aymara men and women are within the range
of those measured across a number of industrialized study
populations (Table 1) (Berti & Leonard, 1998; Kant et al.,
2009; Kashiwazaki et al., 2009; Keino et al., 2014; Manz
et al.,, 2012; Raman et al., 2004). Similarly, a large-scale
study in Indonesia, a hot, tropical environment, found
water intakes similar to industrialized populations in tem-
perate climates (Table 1) (Laksmi et al., 2018).

Cultural practices, particularly diet, can have a larger
effect than activity or environment on water turnover.
Foods that are high in water content or dependence on
culturally important beverages can raise water intake.
For example, Shuar adults have the highest mean water
turnovers recorded during normal daily life among
human populations to date (9.37 + 2.3 L/d for men, 4.47
+ 04 L/d for women), much greater than those of
Tsimane men and women who live in a similar ecological
context and have broadly similar subsistence and dietary
practices (Christopher et al., 2019; Rosinger & Tanner,
2015). Water turnover in both populations is likely
influenced by environmental variables and physical activ-
ity, but the high turnovers evident in the Shuar clearly
reflect the consumption of large quantities of chicha, a
traditional fermented beverage made from manioc
(Christopher et al., 2019). Indeed, cultural dietary differ-
ences can affect not only the amount of water intake, but
also the proportion of water intake from different beverages
and foods (Athanasatou et al., 2016; Morin et al., 2018; Tani

et al., 2015). For example, Morin et al. (2018) found consid-
erable differences between countries (Argentina, Brazil,
China, Indonesia, Mexico, and Uruguay) in both the volume
of fluid intake and the proportions from sugar-sweetened
beverages, dairy, and water among children and
adolescents.

Variation in water security, which is often overlooked
as an environmental predictor of water turnover, may
explain similarities between water turnover and intake
values across industrialized and small-scale populations.
In most developed populations, clean potable water is
consistently available. Safe water is not always readily
available in many foraging and farming populations, and
poor water quality places many small-scale populations
at increased risk of potential lethal water-borne illnesses
(Rosinger, 2015a, 2015b). Regions that are arid or prone
to drought heighten these challenges. These social and
environmental pressures may constrain water consump-
tion behavior and, in turn, affect water balance physiology.
Consequently, broad similarities in water turnover among
small-scale and industrialized populations (Table 1,
Figure 4) may mask differences in hydration-related
health. It is unclear at present whether the similar water
intakes among populations reflect similar needs, or if
needs for small-scale societies are greater but are chroni-
cally unmet. Work by Rosinger (2015a, 2015b) suggests
water scarcity and dehydration may be common in small-
scale societies. Developing better accurate guidelines for
water intake in small-scale populations will require more
investigation into the environmental and social determi-
nants of water turnover in small-scale societies and their
impacts on hydration physiology and health.

7 | CLIMATE CHANGE

The need for a more fully realized cross-cultural under-
standing of water turnover is amplified by the impending
threats of the climate crisis, which are likely to produce
significant environmental disruptions that will directly
affect water availability. Water scarcity can manifest in
two ways, as “physical scarcity” that results from insuffi-
cient environmental supply, and “economic scarcity” that
occurs when there is a lack of necessary water infrastruc-
ture to supply a population (International Water Manage-
ment Institute, 2007; UNESCO, 2019). Population growth
and its related economic changes (increased urbaniza-
tion, agricultural demand, and pollution) are important
drivers of both physical and economic water scarcity (Food
and Agriculture Organization of the United Nations [FAO],
2012; Guppy & Anderson, 2017). These economic demands
for water and a lack of adequate supply have already led to
widespread water scarcity, with over a quarter of the world's
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population living without access to safe water (UNESCO,
2019). The increased water requirements of growing
populations, and their agricultural and industrial needs, are
compounded by shrinking of temperate regions and subse-
quent expansion of hot arid zones around the world, exacer-
bating issues of water insecurity in developing nations
(Intergovernmental Panel on Climate Change [IPCC], 2017,
Stringer et al., 2009). Though much work has focused on
understanding the complex relationships between water
demand and supply, without adequate understanding of vari-
ation in water turnover and water requirements across
populations living in different environments, large number of
people may continue to face a growing risk of water insecu-
rity (DeNicola, Aburizaiza, Siddique, Khwaja, & Carpenter,
2015; Organization for Economic Co-operation and Develop-
ment, 2012; UNESCO, 2019).

As the world continues to warm and the global popula-
tion increases, the effects of climate change are predicted
to affect nonindustrialized nations disproportionately, with
indigenous peoples of those countries being some of the
most vulnerable (Levy & Patz, 2015; Moore & Diaz, 2015).
Like the asymmetrical distribution of global temperature
rise, severe changes in rainfall patterns that result in phys-
ical water scarcity are a growing concern for countries
already dealing with economic water scarcity (Dettinger,
Udall, & Georgakakos, 2015; FAO, 2012; Kaushal, Gold, &
Mayer, 2017). These concerns are aggravated by climate
models that suggest the likelihood of increased climatic
variability (Folland, Karl, & Salinger, 2002; IPCC, 2017).
Climate variability can lead to prolonged periods of
drought and water stress, specifically in regions that
already experience frequent drought condition (Ayoub &
Alward, 1996). Consequently, while overall global precipi-
tation is predicted to increase, water stress and dehydra-
tion remains a growing threat for many.

Over the past 50 years countries in Asia and Africa have
seen the largest increase in population, and current popula-
tion growth among the 49 least developed nations is nearly
double that of developed countries (United Nations, 2010). Of
the 25 countries with the highest rates of population growth,
23 are located in the Middle East or Africa (Department of
Economic and Social Affairs, Population Division, United
Nations [DESA], 2017). Yet, while the importance of environ-
mental and lifestyle effects on water turnover are widely
acknowledged (DESA, 2017; I0M, 2004), the preponderance
of data on water turnover and hydration requirements come
from populations with little cultural, behavioral, and environ-
mental relevance to a large portion of the global population.
This combination of underrepresentation in the literature
and increased ecological and economic threat leaves small-
scale populations around the world at greater threat of water
insecurity. A more accurate understanding of the

environmental and behavioral variables that can affect water
turnover is vital to address this threat.

8 | NEW DIRECTIONS

As this review has described, the factors influencing daily
water requirements are myriad, and a better understanding
of the diversity of human hydration is needed. Specifically,
more research into the water requirements and physiology
of small-scale societies and other nonindustrialized
populations is essential if we are to develop a comprehen-
sive understanding of human water needs. Water turnover
data for children in these populations is of particular
importance, not only to increase the cross-cultural repre-
sentation, but also to help protect those who may be the
most vulnerable to water stress.

With more measures of water use across a greater
diversity of lifestyle and ecology, the effects of behav-
ioral and environmental factors might come into better
focus, advancing current models of water turnovers for
humans. These efforts will require researchers in the
field to expand current nutritional surveys to include
measures of water use. More widespread use of isotope
tracking methods would also improve the precision of
these measures. The impending threat of increased
water stress across the globe due to climate change and
increasing economic disparity heightens the importance
of understanding human water requirements. It has
long been known that water is essential for life. It is
past time for our deep understanding of this vital nutri-
ent to reflect its physiological, cultural, and ecological
importance.
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