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Abstract
Based on the theory of “snapshot/pullback attractors”, we show that important features of the
climate change that we are observing can be understood by imagining many replicas of Earth
that are not interacting with each other. Their climate systems evolve in parallel, but not in the
same way, although they all obey the same physical laws, in harmony with the chaotic-like
nature of the climate dynamics. These parallel climate realizations evolving in time can be
considered as members of an ensemble. We argue that the contingency of our Earth’s climate
system is characterized by the multiplicity of parallel climate realizations rather than by the
variability that we experience in a time series of our observed past. The natural measure of
the snapshot attractor enables one to determine averages and other statistical quantifiers of
the climate at any instant of time. In this paper, we review the basic idea for climate changes
associated with monotonic drifts, and illustrate the large number of possible applications.
Examples are given in a low-dimensional model and in numerical climate models of different
complexity. We recall that systems undergoing climate change are not ergodic, hence temporal
averages are generically not appropriate for the instantaneous characterization of the climate.
In particular, teleconnections, i.e. correlated phenomena of remote geographical locations are
properly characterized only by correlation coefficients evaluated with respect to the natural
measure of a given time instant, and may also change in time. Physics experiments dealing
with turbulent-like phenomena in a changing environment are also worth being interpreted in
view of the attractor-based ensemble approach. The possibility of the splitting of the snapshot
attractor to two branches, near points where the corresponding time-independent system
undergoes bifurcation as a function of the changing parameter, is briefly mentioned. This
can lead in certain climate-change scenarios to the coexistence of two distinct sub-ensembles
representing dramatically different climatic options. The problem of pollutant spreading
during climate change is also discussed in the framework of parallel climate realizations.

Keywords Climate dynamics · Nonautonomous systems · Ensembles · Snapshot attractors ·
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1 Introductory Comments

The traditional theory of chaos in dissipative systems has taught us that on a chaotic attractor
there is a plethora of states, all compatible with the single equation of motion of the problem
belonging to a fixed set of parameters [1,2]. The existence of these many different states can
be understood in terms of time series. Let us consider a time evolution whose initial position
in the phase space lies on the attractor itself, and another one emanated from a nearby point
of the attractor. It is well-known that these time series considerably deviate and visit states
lying far away from each other on the attractor. The extended size of a chaotic attractor and
the sensitivity to initial conditions (unpredictability) are therefore two sides of the same coin.
In traditional cases chaotic attractors are low-dimensional and do not depend on time, or can
be made time-independent by a properly chosen sampling (stroboscopic mapping).

The dynamics of the atmosphere and the oceans is turbulent, weather, therefore, exhibits
chaos-like properties, and is certainly unpredictable [3]. This is also true in the more general
context of the climate system [4,5], which incorporates sea ice and land surface processes
including biology for the description of century-scale dynamics. The “chaotic attractor” of
the climate system is, however, of very large dimensionality and is not easy to visualize.
We are unable to plot this attractor and consider its size as a measure of unpredictability.
For a qualitative view of this property, we can accept that there is a multitude of possible
states, all governed by the same laws of physics and external forcing. In a stationary case,
it is worth speaking of parallel states of the climate. This is a concept that helps in making
the term “internal variability” [6] plausible: even if we observe only a single state at a
given time instant, many others would also be plausible, simply due to the chaotic nature
of the dynamics. It is important to note that the distribution of the parallel states is not
arbitrary: an additional property of attractors with chaotic properties is the existence of a
unique probability measure, the natural measure [7], which describes the distribution of
the permitted states in the phase space [1,2,7]. In stationary climate, the external forcing is
constant or periodic (with the longest considered period given by the annual cycle), and the
dynamical system is autonomous when observed on the same day of the year. A forcing of
general time dependence, leads to a changing climate, a fully nonautonomous dynamics. The
main message of this work is that climate should then be characterized by a set of permitted
“parallel climate realizations”.

The paper is organized as follows. In the next Section we show that a changing climate
can be described by an extension of the traditional theory of chaotic attractors: in particular,
the theory of snapshot/pullback attractors [8,9] appears to be an appropriate tool to handle
the problem. This necessitates investigating ensembles of “parallel climate realizations” to be
discussed in detail in Sect. 3. The aim of the paper is to illustrate the broad range of applicabil-
ity of this concept in several climate-change-related problems, and show that the underlying
ensemble view enables one to explore a number of analogies with statistical physics. Par-
ticular emphasis is put on the natural measure on snapshot attractors with respect to which
averages and other statistics can be evaluated providing a characterization of the climate at
any instant of time. Section 4 is devoted to the illustration of the general ideas in a low-order,
conceptual climate model where the time dependent snapshot attractor and its natural measure
can be actually visualized, and in a high-dimensional intermediate-complexity climate model
where only projections of the attractor can be illustrated, but spatial (geographical) features
can also be studied. The remaining part of the paper treats additional problems and concepts.
Section 5 is devoted to ergodicity (in the sense of coinciding ensemble and temporal averages)
and its breakdown in changing climates, leading to the conclusion that temporal averages
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over individual time series do not provide an appropriate characterization in generic cases. As
a particular example of spatial features, in Sect. 6, we turn to the problem of teleconnections,
i.e. correlations between different properties at certain remote geographical locations. Via
several examples we illustrate that teleconnections should be handled in the spirit of parallel
climate realizations, e.g. by means of appropriately chosen correlation coefficients evaluated
with respect to the instantaneous natural measure. A traditional approach based on empiri-
cal orthogonal functions is extended for the ensemble framework. The resulting quantities
may essentially change in a changing climate. Section 7 shows that the ensemble approach
provides an appropriate characterization of any experiments carried out in turbulence-like
problems in which the external parameters undergo a temporal change. In problems where
one of two coexisting traditional attractors disappears as a function of a changing param-
eter, the (temporally evolving) snapshot attractor may split into two qualitatively different
branches of climate states (see Sect. 8). In this case, tipping is endowed with a probability.
Section 9 is devoted to the problem of the dispersion of pollutants under climate change.
In Sects. 10 and 11 we discuss open problems and give a short conclusion, respectively.
Appendix A offers a didactic illustration of the concept of snapshot/pullback attractors by
showing that in the class of dissipative linear differential equations this attractor is nothing
but one of the particular solutions of the problem.

2 Changing Climates: Mathematical Tools

Our climate is changing, and it belongs to a class of systems in which parameters (e.g.
the atmospheric CO2 concentration) are drifting monotonically in time. Even in elementary
unpredictable models, an appropriate treatment of such a property is not obvious, since
traditional methods like periodic orbit theories of chaos (e.g. [1]) cannot be used, as no
strictly periodic orbits exist in such systems.

From the 1990s, nevertheless, there has been a progress in the understanding of nonau-
tonomous dynamics subjected to forcings of general time dependence: the concept of
snapshot attractors emerged. The first article written by Romeiras et al. [8] drew attention
to an interesting difference: a single long “noisy” trajectory traces out a fuzzy shape, while
an ensemble of motions starting from many different initial conditions, using the same noise
realization along each track, creates a structured fractal pattern at any instant, which changes
in time.1 With the help of this concept, phenomena that were not interpretable in the tradi-
tional view could be explained as snapshot attractors, e.g. a fractal advection pattern in an
irregular surface flow which also appeared on the cover of Science [11]. It is worth noting that
the concept of snapshot attractors has been used to understand a variety of time-dependent
physical systems (see e.g. [12–17]) including high-dimensional ones [18,19], and laboratory
experiments [20].

The spread of the concept of snapshot attractor in the field of dynamical systems was
augmented by a development in the mathematics literature [21–25], and became accelerated
by the fact that, in the context of climate dynamics, Ghil and his colleagues rediscovered
and somewhat generalized this concept more than 10 years ago. They used the term pullback
attractor [9,26], and immediately referred to its important role in climate dynamics. It has
become clear later [27–29] that in the context of climate change, not noisy excitations, rather
a continuous drift of parameters (such as increasing CO2 concentration) is relevant, and

1 A precursor of this idea for simple snapshot attractors was the discovery of synchronization by common
noise by Pikovsky [10].
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therefore deterministic (noise-free) snapshot/pullback attractors capture the essence of the
phenomenology of an unpredictable system under these changing conditions.

Qualitatively speaking, a snapshot or pullback attractor can be considered as a unique
object of the phase space of a dissipative dynamical system with arbitrary forcing to which an
ensemble of trajectories converges within a basin of attraction. A distinction from traditional
attractors by means of the adjective snapshot/pullback is useful, since the former ones obey
the property that they can be obtained from a single long time series. The equivalence of this
“single trajectory” method and the instantaneous observation of an ensemble of trajectories
emanating from many initial conditions (ergodic principle) does not hold with arbitrary
forcing. One has to choose between the two approaches (see Sect. 5). It is the ensemble
approach that is appropriate for a faithful statistical representation of a changing climate.
The reason is that the ensemble also represents a natural measure which can be associated
to any instant of time. Even if the concept of snapshot and pullback attractors is practically
the same, it is useful to remark here that a pullback attractor is defined as an object that
exists along the entire time axis (provided the dynamics remains well-defined back to the
remote past), while a snapshot attractor is a slice of this at a given, finite instant of time (their
union over all time instants thus constitutes the entire pullback attractor). Note, however,
that if the dynamics is not defined back to the remote past, then the pullback attractor is also
undefined, but from some time after initialization the snapshot attractors can be practically
identified. This has to do with the fact that when ensembles are initiated at finite times, they
quickly converge to a sequence of snapshot attractors, as demonstrated in Sec. 4.3. It might
be illuminating to mention that in linear dissipative systems with time dependent forcings,
well-known from elementary calculus classes, the particular solution of the linear system
plays the role of the pullback attractor (nonchaotic in this case, as illustrated in Appendix
A), which all trajectories converge to.

3 The Theory of Parallel Climate Realizations

In order to make the unusual concept of pullback/snapshot attractors plausible, which might
appear too much mathematically-oriented, while the concept of observed time series is widely
used, we proposed the term parallel climate realizations2 in [30]. Qualitatively speaking, we
imagine many copies of the Earth system moving on different hydrodynamic paths, obeying
the same physical laws and being subjected to the same time-dependent set of boundary
conditions (forcing), e.g., in terms of irradiation. Parallel climate realizations constitute,
in principle, an ensemble of an infinite number of members. At any given time instant,
the snapshot taken over the ensemble, the snapshot attractor, represents the plethora of all
permitted states in that instant, just like in a stationary climate. However, the ensemble,
representing the natural measure of the snapshot attractor, undergoes a change in time due to
the time-dependence of the forcing, and, as a consequence, both the “mean state” (average
values) and the internal variability of the climate changes with time.

It is remarkable that the idea of parallel climate realizations came up as early as 1978
in a paper by Leith [31]. He also argued about the importance of parallel climate histories
and claimed that the instantaneous state of the climate should be described in terms of the
ensemble formed by these members, based on an analogy with classical statistical mechan-
ics. He appears to have intuitively understood the central importance of time-dependent
probability distributions under changing “external influences”. We feel that Leith should be

2 or parallel climate histories.
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strongly credited for these early illuminating ideas. However, he did not yet have the neces-
sary methodological tools at hand to explore the full potential of this view and neither did it
become widely adopted in the climate community.

The mathematical background discussed in the previous section was the one that has
finally turned out to provide a strict and firm foundation for the practical applicability of the
vision of parallel climate realizations. A basic element of this formulation is the existence
of an instantaneous natural measure on the snapshot attractor which is the real source of the
statistics that define climate.

It is worth recalling two essential properties known from chaos theory that remain valid
in the snapshot/pullback approach, too:

– The simultaneous presence of a wide variety of states is an inherent, objective feature
of unpredictable systems, which cannot be reduced by external influences (e.g., more
accurate measurement, or using a better numerical method). Internal variability is an
inherent property of climate, too. This is expressed by the term “irreducible uncertainty”
in the climate community [32].

– These states may accumulate with a higher or lower density in certain regions of the phase
space, thereby defining the natural measure on the time-dependent snapshot attractor (for
an example, see Fig. 1). One of the important assertions of chaos is that, while following
individual trajectories, predictability is lost quickly, chaos can be predicted with arbitrary
precision at the level of distributions [1,2].

The view of parallel climate realizations offers the opportunity of precisely answering
classical questions raised by climate research. The “official” consensual assessment of the
current climatic situation and its change can be found in the publications of the Intergov-
ernmental Panel on Climate Change (IPCC, [6]). These texts refer to climate at various
levels as “average weather”, implying a probabilistic view. Yet, they do not specify the
probability distribution according to which the statistical quantifiers should be evaluated.
The statistical description may rely on observations of the past, supported by the statement
that “the classical period of averaging is 30 years.”3 However, if the climate state itself is
changing markedly within such a time interval, these averages unavoidably yield statistical
artefacts that may be misinterpreted as they mix up events of the recent and more remote
past.

The theory of parallel climate realizations claims that averages should be taken with
respect to the natural measure μ(t) on the snapshot attractor at time t . The average of an
observable A over the ensemble of parallel climate realizations is the integral of A with
respect to this measure:

〈A(t)〉 =
∫

A dμ(t). (1)

The ensemble average in (1) belongs to a given time instant t , and this way temporal averaging
can fully be avoided. Averages of observables with respect to the natural measure of the
snapshot attractor provide information on the typical behavior, and the time evolution of
such averages gives the temporal changes of this behavior.4 From the variance or higher
order moments about the average the statistics of fluctuations follows, which are different
characteristics of the internal variability. We can say that the ensemble of parallel climate

3 This is augmented in the Glossary of [6] by defining climate, “more rigorously, as the statistical description
in terms of the mean and variability of relevant quantities over a period of time”.
4 This is often called the “forced response” in climate research [6], which is often trend-like when parameters
are drifting.

123



T. Tél et al.

realizations is the generalization of the Gibbs distributions known from statistical physics for
a non-equilibrium system whose parameters are drifting in time. The micro-states, at a given
time instant t , are the permitted states of the climate system (the permitted positions in the
phase space), while the macro-state is described by the full natural measure, μ(t), including
averages etc. taken with respect to this measure.5

A general definition of climate change was given in this spirit as early as in 2012 by Bódai
and Tél [27] who wrote: “climate change can be seen as the evolution of snapshot attractors”.

We illustrate the advantage of the existence of instantaneous probability measures on the
snapshot attractor by the concept of climate sensitivity [34–36], which plays a central role
in climate science [6] (for a recent review see [37]). In the most elementary formulation,
one is interested in a quantity A characterizing climate at a fixed parameter value p and in
how much this quantity changes when observed at another parameter value p + Δp. If all
other parameters are also fixed, this is called “equilibrium climate sensitivity” [6], and can
be obtained by evaluating an average of A over a long time interval. Time-dependence can
be introduced in various ways, e.g. involving the parameter p itself (as usually done for CO2

concentration). We briefly discuss here the case when p is not changing in time, but the
change of other parameters are responsible for a non-autonomous dynamics. In this case, we
are in a position of defining instantaneous climate sensitivities over the ensemble as follows.

We determine first the ensemble average 〈A(t)〉p of quantity A at time t with a fixed
parameter p, and then the ensemble average with the shifted parameter 〈A(t)〉p+Δp at the
same time. Denoting the difference by Δ〈A(t)〉, the sensitivity can be defined as

S(t) = Δ〈A(t)〉
Δp

. (2)

Given the full natural measure, of course, sensitivities beyond that of the average can also be
defined, e.g. that of the standard deviation σA(t) = (〈A2(t)〉 − 〈A(t)〉2)1/2 of quantity A as

S′(t) = ΔσA(t)

Δp
. (3)

This provides a measure of the change of internal variability under Δp, but any other cumulant
can also be taken. One might also think of more advanced definitions, we only mention here
the one based on an appropriate distance between the natural measures taken with p and
p + Δp at the same time t . An example of this distance can be the so-called Wasserstein
distance [34], the evaluation of which is, however, rather computation-demanding in realistic
climate models. As the formulas above suggest, the theory of parallel climate realizations
opens the way towards a linear response theory of the climate [31,35,38] to be discussed in
some detail in Sect. 4.3. Note that a response theory currently exists for infinitesimal changes
only; finite-size changes as in (2)–(3) would require theoretical generalization.

After these conceptual considerations, let us briefly discuss the issue of numerical sim-
ulations, the application of the theory of parallel climate realizations to projections of the
future of the climate, perhaps using cutting-edge Earth system models. Let us imagine that
a simulation starts from an initial distribution of a large number N of points in the phase
space. The range over which they are distributed is unlikely to lie exactly on the snapshot
attractor belonging to the time instant t0 of initialization. Based on a general feature of dis-
sipative systems (phase space contraction) and chaoticity, initial conditions are, however,
forgotten after some time [1,2]. As a consequence, the ensemble of any initial shape and

5 This analogy is not to be confused with the terminology of [33] where micro- and macro-states refer to local
variables and those characterizing spatially extended parts of the system (possessing shorter and longer time
scales, respectively).
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distribution converges towards the pullback attractor (as schematically illustrated by Fig. 9
of the Appendix, and by Fig. 3). The convergence is found to be typically exponentially fast
[29,39].6

After a characteristic convergence time, tc, the numerical ensemble thus faithfully rep-
resents the natural measure of the snapshot/pullback attractor. Statistics of the climate can
properly be determined from such numerics, but only for times t > t0 + tc. The value of the
convergence time will be given in the forthcoming examples (and shall be found surprisingly
short on the time scales of interest).7 In simulations carried out with a sufficiently large num-
ber N of ensemble members, the formula (1) of the average is replaced by a much simpler
one. Denoting the numerically obtained value of an observable A at time t in the i th member
as Ai (t), the average is an arithmetic mean:

〈A(t)〉 = 1

N

N∑
i=1

Ai (t). (4)

Higher-order moments and multivariate quantifiers (e.g. correlation coefficients) can be deter-
mined analogously.

Although such a numerics formally provides N different time series, chaos theory teaches
us that their individual meaning is lost after the predictability time (which might be on the
order of tc). Individual time series are thus on the long run unavoidably ill-defined, and non-
representative. It is only their union, the ensemble tracing out the snapshot/pullback attractor
and the corresponding natural measure μ(t) upon it, that carries reliable content.

4 Illustration of Parallel Climate Realizations

4.1 Illustration in a Conceptual Model

Since an explicit illustration of the snapshot attractors’ properties can be acquired in low-
order models only, we turn to such an example. Lorenz formulated an elementary model of
the mid-latitude atmosphere in just three first order differential equations [41]. He assigned a
meteorological meaning to each variable: x represents the instantaneous average wind speed
of the westerlies over one of the hemispheres, and y and z are the amplitudes of two modes of
heat transfer towards the polar region via cyclonic activity. The forcing of the system stems,
of course, from the insolation, specified by a quantity called F . This is proportional to the
temperature contrast between the equator and the pole (and can also be related to the average
carbon dioxide content of the atmosphere). The model has been studied in many papers (see
e.g. [42–44]). The time unit corresponds to 5 days, and therefore it was natural for Lorenz
to introduce seasonal oscillations by making F sinusoidally time-dependent with a period of
T = 73 time units = 365 days about a central value of F0 [45].

In today’s climate change, global warming is primarily due to the warming of the poles
[46,47], which means that the temperature contrast decreases in time. This can be taken into
account in the Lorenz84 model by making the central F0 time-dependent [27]: we can write

6 Even if the initial distribution falls on the attractor at t0, it need not coincide with the natural measure, and
some time is needed in this case, too, until the distribution converges to the natural measure.
7 The situation is more complicated if more than one local pullback attractors (each with its own basin of
attraction) coexist. In most known cases this is not so, but examples have already been found and studied with
two such coexisting attractors [40]. Another source of complication might be a broad spectrum of internal
time scales to be discussed in Sect. 10.
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Fig. 1 The numerically determined natural measure of the ensemble of parallel climate realization in the
Lorenz84 model above the (x, y, z = 0), ż > 0 plane in the 25th, 50th, and 88th years after the onset of
climate change (December 22 of each year) in panels a–c, respectively. Results are given in bins whose linear
size is chosen to be 0.01 in both directions. The support of the natural measure is the snapshot attractor
belonging to these time instants. The last panel shows a single time series of x in one member of the ensemble
(thin magenta line) and the ensemble average 〈x(t)〉 (thick black line). The forcing scenario, i.e., the time
dependence of the annual mean temperature contrast F0 is pictorially represented in the lower part of panel d
(Color figure online)

F0(t) instead of F0. The time axis is chosen such that climate change sets in at t = 0, and
afterwards, for the sake of simplicity, F0 decreases linearly for 150 years, as shown in the
last panel of Fig. 1.

Parallel climate realizations of this model are produced by taking N = 106 randomly
distributed initial points in a large cuboid of the phase space (x, y, z) at t0 = − 250 years,
and by following the numerical trajectories emanating from them. The convergence to the
attractor is found to occur in 5 years with at least an accuracy of one thousandth, so the
convergence time is tc = 5 years. We follow the N trajectories until time t when the simulation
is stopped. By plotting the points of the ensemble at time t > t0 + tc on a fine grid we obtain
the snapshot attractor at t along with its natural measure. This is illustrated in the first panels
of Fig. 1, where, for the sake of clarity, only (x, y) values to which z = 0 belongs (with ż > 0)
are plotted. The natural measure obtained shows how often the states represented by each
pixel are occurring in the ensemble of parallel climate realizations. Figure 1 illustrates that
this distribution might be rather irregular above its support, the snapshot attractor. Comparing
different time instants t reveals that both the attractor and its natural measure change, and
undergo quite substantial changes on the time scale of decades.

Note that the size of the snapshot attractor is bounded, very high x or y values cannot
occur. In other words, there are regions of the (x, y) plane at any time instant that correspond
to forbidden states.

The fact that the convergence time tc is 5 years implies that the distributions of Fig. 1 are
objective (do not depend on the details of their generation, since t > t0 + tc). Averages taken
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with respect to the snapshot natural measure are thus also objective. Panel d) of Fig. 1 exhibits
the ensemble average 〈x(t)〉 of variable x (the strength of the westerlies) as a thick black
line. This can be interpreted as the typical wind speed of westerlies over the parallel climate
realizations. One sees indeed that this is constant up to the onset of the climate change
at t = 0, after which a slightly increasing trend occurs with strong irregular vacillations
superimposed on it.8

The magenta curve is a single time series of x from one of the ensemble members. The
vacillations here are so strong that hardly any trend can be extracted, but, as discussed earlier,
such time series are ill-defined due to the unpredictability of the dynamics.

4.2 Ensemble View in Other Conceptual Models

Natural measures of snapshot attractors (also called sample measures [26]) were generated
and investigated in several papers. Knowing them enables one to determine different statistical
measures, or the aforementioned climate sensitivity [35], as well as, extreme value statistics
[28].

Early publications focused on noisy systems, where the ensemble was based on a fixed
realization of the random process. Chekroun et al. [26] determined the sample measure of
intricate distribution and time dependence in the noisy Lorenz attractor, and in a stochastic
model of El Niño–Southern Oscillation (ENSO), Bódai et al. [48,49] studied the measure on
the snapshot attractors arising in the context of noise-induced chaos. The Lorenz84 model
subjected to chaotic signals, white and colored noise was investigated by Bódai et al. [28].

Special attention was devoted to periodically forced low-order climate models without
external noise. An investigation of the Lorenz84 model with seasonal forcing [45] was carried
out by Bódai et al. [27] from the point of view of an ensemble approach and led to the
conclusion that the snapshot attractor of the forced system appears to be chaotic in spite of
the fact that in extended regions of the forcing parameter F of the time-independent system the
attractors are periodic. It is the underlying transient chaos what the periodic forcing converts
into permanent chaos. Daron and Stainforth [50] investigated the Lorenz84 model coupled
to an ocean box model under seasonal forcing. They compared the distributions based on the
instantaneous snapshot attractors and an ensemble of finite-time statistics (30-year averages),
and analysed the ensemble-size-dependence of the finite-size estimates. Both taking temporal
statistics and a finite ensemble size have been pointed out there to yield biases in general;
and the authors suggested that “ensembles of several hundred members may be required to
characterize a model’s climate”. Daron and Stainforth [51] provided further evidence of the
biases and discrepancies between temporal and ensemble-wise statistics, and demonstrated
the initial-condition-dependence of “transient” convergence properties of ensembles. Pierini
[52] and Pierini et al. [53] considered a periodically forced reduced double-gyre model
described by four variables and determined sample measures, while Chekroun et al. [54]
studied the pullback attractor and its measure in a delay differential model of ENSO.

The effect of a kind of temporally quasi-periodic forcing was investigated by Daron and
Stainforth [51] who considered the classical Lorenz model as a model climate in which one
of the parameters was made time-dependent.

It should be noted that periodically forced systems constitute a rather special case of the
pullback/snapshot approach since in this class the use of this approach can be avoided. When
such cases are considered on a stroboscopic map taken with the period of the driving, the

8 These strong vacillations appear to be consequences of the low dimensionality of this model. In high-
dimensional cases the ensemble average appears to change smoothly, see Fig. 3.
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Fig. 2 Distribution of the sea level pressure (psl) in two members (panel a, b) of an ensemble simulated
in PlaSim. The pressure fields are shown at the same time instant, after the ensemble is expected to have
converged to the snapshot attractor

dynamics turns out to be autonomous. Attractors in such systems are traditionally called [1]
attractors without the adjective pullback/snapshot. These attactors are in fact ergodic as the
classical paper by Eckmann and Ruelle [7] claims.

It appears to be worth reserving the term pullback/snapshot attractor for nonperiodically
time-dependent systems since these are not ergodic as we shall see in Sect. 5. In this sense,
perhaps the first sample measures determined for a deterministic pullback/snapshot attractors
is the one found in [28] for the Lorenz84 model forced with the x component of the dynamics
on the celebrated Lorenz attractor. Cases forced with other irregularly recurrent signals are
treated in [40,55] and in the last section of [53]. An interesting discovery of the previous
paper is the identification of two disjoint basin boundaries, designating the coexistence of
two pullback attractors (a chaotic and a nonchaotic one). The effect of a forcing related to
a monotonic deterministic parameter drift was first investigated by Drótos et al. [29] in the
context of the Lorenz84 model, results of which are sampled in Fig. 1, as discussed in the
previous subsection.

4.3 Illustration in a General CirculationModel

The question naturally arises of how the aforementioned properties of snapshot/pullback
attractors manifest themselves in more realistic climate models. The Planet Simulator
(PlaSim) is an intermediate-complexity climate model developed at the University of Ham-
burg. It is a well-documented [56,57] open source software, freely accessible.9 Due to
discretization, the degrees of freedom are on the order of 105. The temporal development of
the output fields, such as temperature, wind in different air layers, or surface pressure and
precipitation can be displayed on sequences of geographic maps. Therefore, a single climate
realization results in such “movies” of different fields, and parallel climate realizations in
several movies. Figure 2 illustrates that the maps corresponding to the same time instant, but
taken from two different realizations differ considerably. One can see that, in contrast to the
previous conceptual model, it is now possible to investigate also regional or local quantities
and spatial correlations between them in the spirit of spatio-temporal chaos research [58].

The number of parallel climate realizations one can choose is, of course, limited by the
running time, and in our example an ensemble of N = 40 members is used obtained by

9 https://github.com/HartmutBorth/PLASIM.
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Fig. 3 The time evolution of the annual average surface temperature in the Carpathian Basin following the
CO2 scenario (lower panel) is shown by thin gray lines in each member of the Planet Simulator ensemble, and
their ensemble average 〈T (t)〉 is marked by a thick black line. The initial condition of year t = 0 resulting
in a temperature of about 5 ◦C is forgotten by tc = 150 years: after this a constant value (approximately 2
◦C) characterizes the stationary climate up to the onset of climate change in year 600. The ensemble averages
in additional simulations launched in years 570 and 1020 (thick red and yellow lines) are also shown. The
snapshot attractor is indicated by a dashed black line for t < 150 years. Before this time, the ensemble of
simulations does not coincide yet with the snapshot attractor (Color figure online)

minor random perturbations of the initial surface pressure field. In this large model, we can
only examine the projection of the natural distribution on some of the selected quantities.

The concentration of carbon dioxide can be prescribed, and the lower part of Figure 3 shows
the scenario used for this example. Climate change begins in the 600th year, the concentration
doubles in a period of 100 years, and after a plateau the concentration ultimately restores to
its initial value in year 1150.

In [59] the local surface temperature T at the geographic location of the Carpathian Basin
is determined in all 40 ensemble members until the end of year 1500. These are represented by
the thin light gray lines in Fig. 3 to be compared with the ensemble average 〈T (t)〉 given in the
thick black line. The difference is strong again, individual time series are not representative.

It is satisfying to see that within the first 600 years we find a constant average temperature
since the climate is stationary. This is seen in the ensemble average only after approximately
tc = 150 years. The decay leading to this constant is due to the fact that the initial condition
was an artificial choice, which fell outside the attractor. Although our simulation started at
t = 0, the existence of a constant climate can be assumed back in the remote past. In order
to emphasize that a pullback attractor exists already at t = 0, we extended the black plateau
with a dashed black line down to year 0. This helps visualize that the numerical simulation
is attracted by an objective entity, the pullback attractor. In our figure this corresponds to the
union of the dashed line and the continuous black line for t > tc. For t > tc (= 150 years)
the average over the numerical ensemble faithfully represents the typical behavior of the
surface temperature on the pullback attractor. Its shape is reminiscent of the graph of the
CO2 concentration, occasionally with some delay. As a consequence, slices of the pullback
attractor, i.e., the snapshot attractors are time-dependent in intervals when there is a strong
CO2 change. We note again that what we see is the projection of the attractors of the high-
dimensional phase space on a single variable, on the temperature of the Carpathian Basin.

As an additional proof of the objective existence of the pullback attractor, we launch
additional ensembles of N = 40 members at t ′0 = 570 years and t ′′0 = 1020 years (with
the same type of initial condition as at t = 0). The ensemble averages are represented by
the thick red and yellow lines, and it is apparent that they reach the average of the first
ensemble simulation (the thick black line) relatively quickly. In addition, the time needed
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for this is approximately 150 years in both cases, that is, the convergence time tc is found
to be practically independent of the time of initialization (t0, t ′0 or t ′′0 ). We see that whatever
time tin an ensemble is initiated, for times t > tin + tc the ensemble correctly represents the
pullback/snapshot attractor, and thus displays the internal variability of the climate.

Concerning a climate projection for year t , Fig. 3 suggests that from the ensemble of real-
izations a probability distribution of a given quantity, in our example the surface temperature
T , can be generated. The probability P(T , t) possesses its mean as the ensemble average
〈T (t)〉, has some width, but as our previous discussion on the non-permitted states implies,
the support of P is bounded. This means that we can be sure that certain temperatures are
impossible (within the particular model). For e.g. t = 650 years the permitted temperatures
are in the interval (2, 6) ◦C (with 〈T 〉 = 3.8 ◦C), we can thus predict that the chance to have
a temperature T > 6 or T < 2 ◦C is practically zero in this year.

The convergence to a “climatological distribution” (i.e. the natural measure on the snap-
shot attractor in our language) was foreseen by Branstator and Teng in 2010 [60], although
neither a clear numerical demonstration, similar to that in Fig. 3, was given, nor a proper
justification, referring to the theory of nonautonomous dynamical systems [9], was provided.
Beyond reviving Leith’s basic idea about the existence of a time-dependent “climatological
distribution” [31], the authors claimed that (i) it is traced out by a remotely-initialized ensem-
ble, that (ii) a probability distribution emanating from nearby initial conditions differs from
the “climatological distribution” during its early evolution, but (iii) this difference vanishes
after a finite amount of time due to memory loss.10

Beyond case-by-case direct numerical simulation for each different forcing scenario of
interest, we mention here the application of Ruelle’s response theory [65], whereby one
wishes to determine Green’s functions, i.e. the response functions of the system [31,38], and
then predict the response of the natural measure to any forcing scenario. An illustration of this
idea in the aforementioned intermediate-complexity model PlaSim, was given by Ragone et
al. [35], and an application of the technique to an Earth system model is presented in [66].

4.4 The Boom of“Large Ensembles” in State-of-the-Art Earth SystemModels

In the recent couple of years a naive interest in so-called “single-model initial-condition large
ensembles” for Earth system models (ESMs) has abruptly risen. “Large” means a number
of members on the order of 10 or 100 at most, and the attribute “initial-condition” indicates
that the members differ in their initial conditions. At this time large ensemble data sets exist
for about a dozen of coupled general circulation models or ESMs, and analyses of a few of
such data sets have been already reported on.

Most of these ensembles are generated by branching a single run, introducing small or
moderate perturbations to some or all model components, to obtain initial conditions for the
different ensemble members. With this scheme, called nowadays the “micro” initialisation
method [67], it takes some time that the ensemble converges to the natural measure (or,
in the language of climate research, full ensemble spread is reached), and the output data
have to be excluded from any climatological analysis before convergence becomes com-
plete from some practical point of view. The treatment of various time scales present in the

10 The view of Branstator and Teng has been completely adopted (illustrating convergence in a stochastic
conceptual model) by DelSole and Tippett in 2018 [61], whose motivating problem was predictability [62,63]:
the decay of “initial-value predictability” (chaotic memory loss) calls for an inherent probabilistic description
of climate, which has already been recognized by Lorenz [64], and has served as basis for Leith’s statistical
mechanical analogy [31].
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Earth system, including rather long ones, poses a theoretical problem with practical impli-
cations, see Sect. 10.2. We believe that a simple and useful approach is to concentrate on
variables in the atmosphere and the upper ocean only (above the thermocline), including
sea ice complemented with land, and investigate convergence properties in these variables,
which have moderate time scales (up to a few decades at most). It may be important to include
upper oceanic variables to the assessment of convergence, since the faster time scales of the
atmosphere, the sea surface or the land may result in an apparent faster convergence which,
however, does not involve layers of the upper ocean.11 Earlier convergence might be facili-
tated by perturbing some oceanic variables besides or instead of atmospheric ones [33,60],
but we emphasize that any initialization scheme suffices in principle (unlike what is suggested
by [33]).

Most large ensemble projects that are available to date are reviewed in [69]. With a great
vision and effort, a set of these has been made available for public use by the “US CLIVAR
Working Group on Large Ensembles” in a centralized data archive,12 the content and utility
of which is discussed by Deser et al. [67]. In all ensembles that we are aware of, the data
belonging to the earliest time does not conform to the natural measure of the attractor but only
at later times. The time interval to discard at the beginning of the simulations would ideally
need case-by-case specific investigations, but it can generally be estimated to be a few decades.
In a few works, concentrating on the atmosphere, the rapidity of atmospheric memory loss
is emphasized [70,71], even though this approach may be insufficient due to the dynamics
of the upper ocean as discussed above. Works that pay attention to convergence in the upper
ocean or the sea ice (either via memory loss, i.e., independence of initial conditions, or via
concentrating on the increase in the ensemble spread) conclude about time scales of around a
decade, which they discard before the beginning of their analyses [68,72–75]. Unfortunately,
several of the more recent works do not pay attention to the need of convergence (e.g. [76–
78]), which may corrupt analyses that include the time interval of the convergence process.

After convergence takes place, any ensemble represents the natural measure of the model
faithfully and can thus be regarded as a set of parallel climate realizations. The only compli-
cation may arise from the previously mentioned extremely long time scales in the deep ocean,
for which see Sect. 10.2, and which may affect sea level [79] among the more commonly
analyzed observables. Deep oceanic variability is sampled only in a single set of ensemble
simulations, the Max Planck Institute Grand Ensemble (MPI-GE, [69]), all other ensembles
are practically initialized in a single deep oceanic state.

The so-called “macro” initialization scheme in the MPI-GE is qualitatively different from
that of the other ensembles. In this case, no perturbation is applied. Instead, an almost 4000-
year-long control run, subject to a fixed forcing representing “preindustrial conditions” of
1850, is sampled in its last 2000 years, with the intention of fully sampling variability already
at the beginning of the ensemble simulations [69]. The sampling is, however, too frequent for
the statistical independence of the ensemble members: the initialization of certain members
is separated by no more than 6 years, which is definitely less than the memory of even the
upper ocean. Furthermore, constant 1850-conditions correspond to a different attractor than
the one that evolves according to the preceding historical forcing including considerable
volcanic activity [80]. For these reasons, discarding the first decades is desirable in the MPI-
GE as well.

11 In practice, one might try to assess convergence separately for each variable studied in a particular analysis
— however, it carries a risk of overlooking slower time scales in the convergence process. Notwithstanding,
uncorrelated fluctuations of different parts of the system may result in factually different convergence times
and time scales, cf. Sect. 10.2. This is conjectured e.g. in [68] for the sea ice extent in relation with the ocean.
12 http://www.cesm.ucar.edu/projects/community-projects/MMLEA/.
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Additional issues about initialization may arise from the insufficient spinup time: drifts
corresponding to the convergence process from some state off the attractor in deep oceanic
variables may appear and are actually documented in the MPI-GE [69], while their importance
is mostly unknown in the other ensembles. Numerical drift, like in CESM-LE [76], may also
represent a technical problem.

Even with all the drawbacks and deficiencies, “single-model initial-condition large ensem-
bles” of ESMs are expected to be essential for the determination of the forced response of
certain observables, especially those to do with localized climate phenomena, when the rel-
atively strong internal variability masks the possibly weak forced response signal [81–88].

One may also try to utilize the framework of single-model initial condition ensembles,
beyond directly describing the complete internal variability of fully coupled global ESM sim-
ulations, for characterizing some kind of natural variability specifically associated to some
given subsystem of Earth. However, if different subsystems are coupled, quantifying internal
variability restricted to only one subsystem is not necessarily a well-defined problem. An
example is provided by ensemble studies of the ocean subsystem published recently (see [89]
and references therein) in the framework of the OCCIPUT project (OceaniC Chaos - ImPacts,
strUcture, predicTability [90,91]). Their 50-member ocean ensemble is forced by a single
realization of the atmospheric dynamics (corresponding to historical instrumental records)
and is claimed to represent the “intrinsically oceanic” contribution to the full variability
(which includes that of the atmosphere). However, the atmospheric variability is influenced
by the ocean in any realistic ESM configuration through a two-way coupling of the modules,
and the full variability is described by an ensemble in which both atmospheric and oceanic
variables have a nonzero ensemble spread. If one takes the time evolution of the atmospheric
variables in different members of such a hypothetical full ensemble, and then constructs an
ocean ensemble with each of these atmospheric realizations applied as a fixed forcing, the
result will be an extended set of OCCIPUT-type ocean ensembles. Due to the very nature of
two-way coupled nonlinear systems, the superposition of these ocean ensembles with pre-
scribed atmospheric forcing are unlikely to be statistically identical to the full ensemble of
the two-way coupled configuration. Oceanic processes in the latter will then not be described
correctly by the oceanic processes in the individual OCCIPUT-type ocean ensembles in
a statistical sense. Note that the inconsistency of the OCCIPUT-type approach (to quantify
something called “intrinsic oceanic variability”) with the actual oceanic processes will appear
within a single configuration (which can be any arbitrary realistic configuration that involves
atmospheric variability). Although OCCIPUT-type ensembles are thus inconsistent with real-
istic assumptions about the ocean-atmosphere coupling and also with the spirit of parallel
climate realizations, they might shed qualitative light to physical mechanisms relevant for
inter-decadal oceanic variability, a concept discussed in [92]. For a quantitative description
of internal variability if subsystems have substantially different time scales, when two-way
coupling can be approximated by one-way coupling, see basic ideas in Sect. 10.2.

In a different approach, the manifestation of the full internal variability of the Earth system
on spatial scales unresolved by global ESM simulations may be studied by downscaling such
ensemble simulations by regional climate models, see [93] and references therein.

5 Nonergodicity and Its Quantification

The original observation of Romeiras et al. [8], according to which a single long trajectory
traces out a pattern different from that of an ensemble stopped at a given instant, implies
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Fig. 4 Schematic illustration of nonergodic mismatch pdfs P(δτ (t)) for a variable A at a certain time instant
a in a stationary climate and b in a changing climate. In each panel three different values of the window length
τ are taken: τ1 < τ2 < τ3

that ergodicity (in the sense of the coincidence of ensemble and temporal averages) is not
met in nonautonomous systems. Traditional chaotic attractors are known to be ergodic [7]:
sufficiently long temporal averages coincide with averages taken with respect to sufficiently
large ensembles.

Daron and Stainforth [50,51] have demonstrated discrepancies between temporal and
ensemble-based averages, saying that what they call the “kairodic assumption” is not satisfied
in nonautonomous systems.

A systematic investigation of such questions was carried out by Drótos et al. [94]. In
order to characterize the difference between the two kinds of averages, the term nonergodic
mismatch was coined. Consider an observable A. Its time average over a time window of
length τ (centered at time t) in a single realization is denoted as Aτ (t). This is compared
with the average 〈A(t)〉 of the same quantity taken over an asymptotically large ensemble at
t . The nonergodic mismatch δτ (t) is defined as

δτ (t) = Aτ (t) − 〈A(t)〉 (5)

and is a quantity that depends not only on the time instant t but also on the window length τ

over which the temporal average is taken. Ergodicity would be marked by the vanishing of
this mismatch for τ → ∞.

The nonergodic mismatch can be evaluated along each single realization of the climate
ensemble and depends on the realization. For finite window length τ , different values of δτ (t)
are expected, even in ergodic cases, since the window length τ is not necessarily sufficient to
visit the full phase space. We thus expect a distribution of δτ (t) in the ensemble of parallel
climate realizations for any t and τ . From the numerical results a probability density function
P(δτ (t)) can be obtained, called the nonergodic mismatch probability density function (pdf).
Here we summarize the results obtained in [94] qualitatively.

In an ergodic case, a stationary climate (panel a of Fig. 4), the distribution remains centered
about zero, that is at least the ensemble average of this mismatch is zero. The width of the
distribution, the spread, depends on the window length τ and decreases with increasing τ .
The decrease is, however, rather slow, decays according to the law of large numbers as
1/

√
τ . To have a feeling, we mention that in the stationary case of the Lorenz84 model a

one-hundredth agreement between the time average and the ensemble average of variable y
requires a window length of about τ = 10,000 years, while a 0.1 degree agreement in the
surface temperature data of Fig. 3 of PlaSim can be expected with about τ = 200 years.

In the case of a monotonic climate change (panel b of Fig. 4) the pdfs are not centered
about zero, moreover, their maximum moves away from zero with increasing τ . The spread

123



T. Tél et al.

decreases with τ , and scales as 1/
√

τ again.13 The fact that the ensemble average of δτ (t)
increases means that the deviation from ergodicity is the stronger on average the larger the
window length τ is. It is therefore needless to hope for the validity of ergodicity in a changing
climate. This provides an additional argument for avoiding the use of individual time series
in climate simulations. Certainly, the quantity 〈|δτ (t)|〉, called the ergodic deficit in [94], can
be considered as a measure for the breakdown of ergodicity.

6 Teleconnections: Analyzing Spatial Correlations

Teleconnections are statistical correlations between the states of remote locations of the globe.
These amazing links connect regions lying thousands of kilometers from each other and are
manifestations of the structured nature of internal variability. One of the most important tele-
connections is the relationship of the amount of the precipitation or the average temperature
of the Indian summer monsoon with the temperature of the Central Pacific. If the Central
Pacific gets warmer, then Southern India becomes wetter and colder.

All traditional methods quantifying teleconnections (evaluating correlations in some way)
agree in that they are based on long-term temporal statistics. This naturally implies that these
methods, in principle, cannot be used in a changing climate, since they bring certain sub-
jectivity into the investigation (see Sect. 2). Furthermore, investigating the teleconnections
through the temporal correlations between a so-called teleconnection index and another vari-
able (e.g., temperature or precipitation) a single correlation coefficient can be obtained. This
correlation coefficient characterizes the strength of the relationship for a given time interval,
assuming that the climate is stationary for this given period. However, as climate is changing,
there is no guarantee that the strength of the teleconnections remain the same.

The application of the parallel climate realizations provides a simple solution for the
aforementioned problem, eliminating also any subjectivity. With a sufficiently large number
(N ) of realizations an ensemble-based instantaneous correlation coefficient can be defined
which provides the appropriate characterization of the strength of teleconnections in the spirit
of parallel climate realizations.

At a given time instant t , utilizing the whole ensemble, N values of two variables A and B
(between which the relationship is studied) are available, and the ensemble-based correlation
coefficient is obtained as

rA,B(t) = 〈A(t)B(t)〉 − 〈A(t)〉〈B(t)〉
σA(t)σB(t)

, (6)

where σA(t) and σB(t) are the ensemble standard deviations of quantity A and B, as defined
in relation with Eq. (3). The obtained correlation coefficient characterizes the chosen time
instant t indeed. Therefore, during a changing climate the time-dependence of the strength
of correlations, i.e., rA,B(t), can be studied. In the context of teleconnections, one of the
variables A and B is chosen typically as a teleconnection index, while the other is some
common meteorological variable.

As a first example, we consider the North Atlantic Oscillation (NAO) [95–97], which
is an oscillation observable in the difference of sea level pressure between the permanent
low pressure system over Iceland and the permanent high pressure system over the Azores.
Teleconnection indices typically characterize the phase of an oscillation in a meteorological
quantity taken at remote locations. In particular, the NAO teleconnection index (NAOI) is

13 Note that this process in window length τ is much slower than the convergence to the snapshot/pullback
attractor in time t .
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Fig. 5 The time evolution of the ensemble-based correlation coefficient of the NAOI with the Mediterranean
winter (December to February) surface mean temperature T (left) and precipitation P (right) in the PlaSim
model. The CO2 scenario can be seen in Fig. 3

based on the difference in the normalized sea level pressure between Iceland and the Azores.
Since the pressure difference controls the direction and strength of the westerlies entering
into the European region, a high (positive) NAOI, meaning large difference in the sea level
pressure between Iceland and the Azores, implies stronger westerlies. These result in higher
winter temperature in the Scandinavian region and in the eastern United States, and a lower
temperature in the Mediterranean and Greenland [98–100]. Analogously, low (negative)
NAOI goes together with above-than-average precipitation during winter in Scandinavia,
and below-than-average precipitation over the Mediterranean.

At a given time instant, it is also possible to compute an instantaneous teleconnection
index in the spirit of parallel climate realizations. For the NAO index, NAOI, the definition
in the ensemble framework for the i th member reads as

NAOIi (t) = pA,i (t) − 〈pA(t)〉
σpA (t)

− pI,i (t) − 〈pI(t)〉
σpI (t)

, (7)

where pA,i (t) and pI,i (t) are the sea level pressures in the i th ensemble member at the Azores
and Iceland, respectively.

Figure 5 illustrates the time evolution of the correlation coefficient between the NAOI
and the Mediterranean winter temperature and precipitation in PlaSim under the CO2 con-
centration change scenario given in Fig. 3, computed for a 40-member ensemble of climate
realizations. Similarly to what is experienced nowadays, during the plateau of 360 ppm a
negative correlation coefficient between the NAOI and both quantities can be found: larger
NAOI (due to larger pressure difference between the Azores and Iceland) results in lower
temperature and less precipitation in the Mediterranean region. However, as the CO2 concen-
tration increases, the correlation of the NAOI and the temperature decreases and practically
disappears on the plateau of 720 ppm CO2. We also emphasize that generally different quan-
tities are affected in different ways: the right panel of Fig. 5 demonstrates that, e.g., the
strength of the teleconnection with the Mediterranean precipitation does not change at all
despite the change in the forcing [30]. We note that the large fluctuations in the curves are
due to the relatively low number of climate realizations. The utilization of a larger ensem-
ble would result in smoother curves, as the amplitude of these fluctuations, representing
the sampling error of the correlation coefficient for a finite number of ensemble members,
monotonically decreases with increasing ensemble size. These examples draw attention
to the fact that remarkable changes in the typical strength of the teleconnections can be
observed.
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We turn now to a brief discussion of one of the most known teleconnections, the El Niño–
Southern Oscillation phenomenon (ENSO). ENSO is manifested in the irregular variation
of wind and sea surface temperatures over the tropical Pacific Ocean [92,101–104]. ENSO
has an impact locally and globally as well. It controls at least the half of the global climate
system, therefore it is urgent to study its teleconnections.

One prominent ENSO teleconnection is the relationship with the Indian summer monsoon.
In the framework of parallel climate realizations, ENSO indices similar to Eq. (7) can be
defined. An increasing strength of the teleconnection between a particular ENSO index and
the Indian summer precipitation has been detected in the MPI Grand Ensemble in the 20th
century. No strong change was found, however, under future scenarios forced even more
strongly either in the MPI Grand Ensemble or in the CESM Large Ensemble [87]. Very
recently [88] a similar conclusion has been drawn regarding the observed strengthening of
the Pacific Walker circulation, namely, that the forced response signal seen in the CESM-LE
is very weak, and the apparent strengthening should be mostly due to internal variability.

Another phenomenon is the Arctic Oscillation (AO) which appears as a ring-like pattern
of sea-level pressure anomalies over the Northern Hemisphere centered at the polar region
[105,106]. Since we experience the largest temperature changes in the Arctic region, where the
surface temperature increase is twice that of the tropics [46,47], it is also worth investigating
correlations in the context of AO-related phenomena.

The AO phenomenon has the specific feature that its index (AOI) is defined solely by
means of EOF (empirical orthogonal function) analysis (also known as principal component
analysis in the physics literature) [107]. Traditionally it is also based on time series utilizing
long-term statistics. In this context, it is worth emphasizing here that the theory of parallel
climate realizations provides an opportunity for an ensemble-type extension of EOF analysis,
too. In this spirit a novel, so-called snapshot EOF (SEOF) analysis method has been developed
in [108]). It computes the characteristic pattern for the AO, represented by the leading mode
of the EOF analysis over the ensemble for any given time instant. Hence it is capable of
monitoring both the time dependence of the pattern and that of the AO amplitude. We note
that a similar method (called EOF-E) has also been developed recently in Ref. [109], however,
it differs from [108] as it washes together the variability of the monthly data and that of the
ensemble.

The AOI teleconnection index is computed in this framework as the standardized principal
component of the first EOF mode of the SEOF analysis. Particular features of the AO and
its related phenomenon have been studied by means of two state-of-the-art climate models
(CESM-LE and MPI-GE) in [108]. The results reveal that the AO pattern and the AO-related
phenomena, usually treated to be stationary, are actually time-dependent. Furthermore, the
AO’s amplitude, i.e., the fluctuation in the sea level pressure field, appears to be enhanced
significantly. The AO-related phenomena also show a remarkable shift, especially in winter-
time at the Eastern coast of the USA and Northern Europe between 1950 and 2100 in the
investigated scenarios.

Finally, we mention that the SEOF method can also be used as a refined characterization
of ENSO. Preliminary results [110] suggest that the influence of the ENSO on the Indian
Monsoon increases in the 21st century: the anticorrelation becomes stronger, resulting in
wetter summers in India in El Niño years. The Arctic and the tropics exhibit considerable
connections with each other, therefore, studying ENSO and AO as a coupled system could
be an interesting direction of future research.
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7 Ensembles in Experiments

“Minimal modeling” of various components of the terrestrial climate system using laboratory-
based experiments has a long history stretching back to the mid-20th century [111,112]. Ever
since, measurements investigating rotating, density-driven shallow-layer flows have provided
remarkably useful insights to the basic underlying phenomena of atmospheric and ocean cir-
culation, such as cyclogenesis via baroclinic instability [113], time-reversal asymmetry of
temperature fluctuations in weather station records [114], excitation of internal gravity waves
[115] just to name a few examples. Furthermore, laboratory models of the mid-latitude atmo-
spheric circulation have been applied to test and validate numerical hydrodynamic solvers
[116] and meteorological (ensemble) forecast techniques [117].

Such experimental investigations nicely complement research based on numerical general
circulation models: the latter can, theoretically, access the full set of parameters but with a
limited resolution which hides important subgrid-scale nonlinear phenomena that may affect
multiple scales. Experiments, however, provide practically infinite spatio-temporal resolution
(making the setting an ‘analogue computer’ in a sense) but are very limited in the number of
parameters to be controlled.

It is indeed impossible to scale down the plethora of relevant effects of the actual climate
system simultaneously to a typically tabletop-size laboratory tank. Yet, a careful order-of-
magnitude analysis of the equations of motion enables experimenters to select the most
relevant non-dimensional parameters the setting of which yields an approximate hydrody-
namical similarity to the large-scale flows in question. For ‘sideways convective’ rotating
flows – such as thermally driven ocean currents or atmospheric circulation cells powered by
the Equator-to-pole gradient of solar heat flux – the most important similarity parameter is
the thermal Rossby number RoT which reads as

RoT = αgHΔT

Ω2 L2 , (8)

where g is the gravitational acceleration, α represents the volumetric thermal expansion
coefficient of the medium, Ω is the rotation rate (of the planet or experimental tank), ΔT
denotes the lateral temperature contrast, and H and L are the vertical and horizontal scales,
respectively.

RoT is a measure of (geostrophic) turbulence in the system. When RoT 	 1 holds, the
flow is considered quasi-geostrophic, i.e. dominated by the Coriolis force; the planet-scale
currents in the atmosphere and the ocean are in this regime, with RoT values of ca. 0.1 and
0.01, respectively [118]. Typically, the smaller RoT is, the more (geostrophically) turbulent
and more irregular the flow patterns become. Thus, by setting different values of rotation
rate Ω and lateral temperature contrast ΔT in a given laboratory tank, qualitatively different
flow structures can be encountered.

This observation opens up the opportunity of modeling climate change scenarios exper-
imentally via applying time-dependent thermal boundary conditions ΔT (t) as forcing that
are expected to have a similar effect to the CO2 forcing used in the numerical models. As
explained earlier, in the real Earth system the Equator-to-pole temperature difference tends
to decrease in parallel to the rise of global mean temperature [46,47].

An obvious advantage of experimental setups compared to observations of the real Earth
system is the opportunity to reproduce experiments. Reproducing them with the same bound-
ary conditions (forcing) most naturally provides an ensemble of different realizations of the
same process, which represents the multitude of possibilities permitted by turbulence or
chaotic-like phenomena, i.e., parallel realizations of the minimal climate system model.
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Fig. 6 The experimental set-up used in [20] for the ensemble modeling of mid-latitude atmospheric circu-
lation (a). The dimensions are L = 12 cm, H = 4.5 cm, denoting the horizontal scale and fluid depth,
respectively. Time-dependent temperature contrast ΔT was changing as shown in the bottom graph of panel
b. (The practically indistinguishable green curves represent the forcing time series from all members and the
black curve shows their mean.) The top panel of b shows the ensemble of temperature response in terms of
spatially averaged temperature 〈T 〉(t) as obtained from three temperature sensors whose locations are marked
in panel a. Solid and dotted black curves represent the ensemble mean and the upper- and lower bounds of
the instantaneous ensemble standard deviation interval, respectively. Coloring is also added to distinguish
between the “stationary” (turquoise) and “changing” (yellow) sections, and one exemplary ensemble member
(red), shifted by +2.5◦C for visibility. Panel c shows the histograms of ensemble standard deviations about the
ensemble mean (determined for a large number of time instants) for the “stationary” (t < 0) and “changing”
(t > 0) sections. The color coding is as in panel b) (Color figure online)

Results from a small ensemble, consisting of nine individual experimental members, of
a climate-change-inspired setup described above were reported in [20]. Temperature time
series were obtained from a rotating differentially heated annular wave tank mounted on a
turntable and rotating about its axis of symmetry (Fig. 6a), yielding RoT ∼ 0.01. From each
ensemble member 10000s (3300 revolutions of the tank) of temperature data were evaluated,
with the onset of ‘climate change’ (hereafter marked as time zero, t = 0) occurring exactly
at half time. In this scenario the lateral temperature contrast ΔT was set to be constant at
t < 0 followed by an exponential decay ΔT ∼ e−t/τ for t > 0 (Fig. 6b).

Addressing spatio-temporal variability in the water surface temperature field, ‘traditional’
single-realization measures and their ensemble-based counterparts were compared, e.g. stan-
dard deviations, spatial and temporal spectra and characteristic timescales. As an example of
a rather typical finding, we briefly discuss the case of standard deviations. When computing
running standard deviations within 501s long windows of records of spatially averaged tem-
perature from the ‘stationary’ (t < 0) and ‘changing’ (t > 0) sections of any given ensemble
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member (following appropriate detrending) the authors did not find significant differences
in the distributions of the obtained running standard deviation values, thus no clear evidence
was found that the nature of thermal fluctuations in a changing model climate would differ
from that in the stationary part of the same run. However, when the ensemble standard devi-
ations were considered about the ensemble mean (calculated at each time instant t) it was
found that the histograms of these values differed markedly in the t < 0 and t > 0 intervals
both in terms of their mean and their skewness (Fig. 6c). This observation can be interpreted
as a manifest difference between probability density functions of the (snapshot) attractors
corresponding to the ‘stationary’ and ‘changing’ sections of the dynamics.

Besides climate-related aspects it is worth noting that the ensemble approach may be the
proper way to conduct fluid dynamics experiments in which non-equilibrium (non-ergodic)
processes and turbulence are involved, i.e. phenomena characterized by inherent internal
variability. The saying ‘one experiment is no experiment’ is of course probably just as old as
physics itself, but what experimenters usually mean by it is the separation of measurement
errors (noise) from significant data. However, in non-stationary fluid dynamics problems
fluctuations are inherent, even dominant features of the investigated nonlinear processes and
the aim of repeated experiments can be the exploration of internal variability. A well-known
example – and a research area where ensemble statistics are already widely accepted and used
– is the case of laminar-to-turbulent transition in pipe flows [119–121]. Perturbing a laminar
background flow with a small standardized injection of matter yields the formation of transient
turbulent structures (so-called puffs and slugs) with a finite lifespan. This lifespan can vary
largely in different experimental runs due to the nonlinear nature of the processes involved.
Thus, only an ensemble statistics of these lifespans from a multitude of experiments (that
are initiated identically within measurement precision) can provide meaningful information
of these interesting intermittent phenomena, as demonstrated in e.g. [121]. In this example,
the external parameters are fixed; a particularly wide range of applications of ensemble
experiments is expected in the future in cases characterized by drifting parameters.

8 Splitting of the Snapshot Attractor

It is a general feature of multistable dynamical systems [122], where multiple stable asymp-
totic states coexist in some range of the parameters (or forcing) that a parameter drift may
result in drastic changes in the system’s behaviour. It was demonstrated in various studies
that a sharp transition between the possible asymptotic states may take place. This behavior
is referred to as a tipping transition, or critical transition. In terms of climate dynamics, the
stopping of the thermohaline ocean circulation [123] or the occurrence of “snowball Earth
events” [124–126] are important examples.

Multistability of the Earth’s climate was first found using conceptual, energy balance
models (e.g. the one-dimensional diffusive, Ghil–Sellers [127] model), and later in interme-
diate complexity models, like PlaSim [128]. Multistability comes from the fact that a type
of instability appears in these models [129–131], which is referred to as a saddle state, or
Melancholia state. This unstable equilibrium is embedded in the boundary between the basins
of attraction of the two stable climates. Unlike the attracting climate regimes, the Melancho-
lia state is characterized in [130] by a planet that is ice-covered up to the midlatitudes. It
was also demonstrated that the Melancholia state plays an important role in noise-induced
transitions between the stable climate regimes [132].
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Fig. 7 Left panel: Schematic diagram in a bistable system showing two coexisting chaotic-like attractors in the
projection to an arbitrary variable, A (for visualization), as a function of the stationary parameter value, S. Right
panel: Schematic illustration of the time dependence of the variable A over the ensemble subjected to the S(t)
parameter drift scenario (shown in the lower part of the panel). Internal variability is represented by the gray
band, the variance of the ensemble. The ensemble average is indicated by the thick black curve. The ensemble
splits at about year 300. After this time, a red (blue) stripe illustrates the distribution of the realizations ending
up on the red (blue) colored usual attractors in the left panel. The average of these subensembles is marked
by a dark line (Color figure online)

In low-dimensional systems that lack any kind of internal variability, Ashwin and cowork-
ers [133,134] used the framework of pullback attractors to investigate tipping phenomena.
They were able to formulate conditions under which tipping may happen. However, not
much is known about such transitions in systems with rich internal variability (e.g. the cli-
mate system). Since in these systems a single simulated trajectory does not necessarily carry
any predictive meaning, we argue that in general, the theory of parallel climate realizations
should be applied to these problems, too [135].

An important property of the climate system is that for some range of fixed parameter
values, it also allows two coexisting usual (stationary) attractors. The main difference from
regular multistability is that both of these attractors are chaotic-like, given the complexity of
the system. Let us now consider a scenario during which a parameter S drifts through a region
where one of the coexisting chaotic attractors loses stability. After passing the bifurcation
point, the parameter S returns abruptly to the initial value. Even when initializing the ensemble
entirely inside one of the basins of attraction (that belongs to the initial parameter value),
only a fraction of the ensemble may end up on the usual attractor on which the ensemble
was started. During the returning part of the parameter drift, at the point when this usual
attractor reappears, the snapshot attractor (as an extended object) may overlap with the basin
of attraction of both of the coexisting usual attractors. The ensemble’s subset that overlaps
with the (time evolving) basin is then captured by the given attractor. Through this mechanism
it is possible for snapshot attractors to split into two unconnected parts. Strictly speaking, the
snapshot (and the pullback) attractor remains a single object, but for some practical purposes,
it is reasonable to treat the two parts as separate entities. In particular, for initializations
taking place after the splitting event, they are two snapshot attractors, with their own basin
of attraction, since it is no longer possible for trajectories to cross from one part to the other.

This phenomenon is depicted schematically in Fig. 7. In the left panel, the two coexisting
usual chaotic-like attractors, with internal variability (red and blue colors) are shown by
projecting them onto a single variable, A. This may stand for e.g. surface temperature or any
other relevant quantity. The right panel illustrates the time dependence of A in an ensemble
subjected to a drift in parameter S by the scenario given in the lower panel. The red and blue
bands encompass those members of the ensemble that end up on the corresponding chaotic
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attractors by the end of the scenario. Initially, these coincide and make up a single connected
part of the snapshot attractor (grey band). After a certain time the snapshot attractor splits
and two unconnected parts (colored red and blue in Fig. 7) appear, and the transition becomes
impossible between them.

In this view, it is not useful to talk about a single average/typical behaviour, after the
splitting at least. Simply averaging the variable over the full ensemble (the full snapshot
attractor) yields a value which is far from any realization, and would not reflect any of the
possible states permitted by the system (the average would fall into a forbidden region in the
terminology of Sect. 4).

Once the two branches have separated, it makes more sense to consider the two subensem-
bles, and characterizing the corresponding climate regimes by their own parts of the natural
measure. For example, one can define an average within each of the separated ensemble’s
disjoint components.

The separation of the snapshot attractor to two unconnected branches, between which
transition of trajectories is not possible, stems from the fact that the corresponding stationary
system is not ergodic in the sense of the existence of a unique global asymptotic probability
measure [136]. As a consequence, the time-dependent system remains inergodic [22], even
if the ensemble starts within the basin of one of the attractors since the ultimate outcomes
are described in practice by two distinct distributions, see Fig. 7. The uniqueness of the full
measure associates a well-defined probability of ending up on each climate regime.

The probabilistic nature of the outcomes was investigated in a similarly bistable system,
which also contains noise [132]. Lately, the limiting case was also discussed, where the
strength of the noise goes to 0, which results in a deterministic system. In this limit it was
found that the probabilities associated to ending up on the stable attractors is either 1 or 0,
and this can be exchanged between the attractors by tuning a parameter [137].

The mechanism described provides an example applicable to a snowball Earth transition
[138] when the realization of tipping might have a nonzero probability in a deterministic
system, which is dependent on the particular forcing scenario.

9 Spreading of Pollutants in a Changing Climate

As an additional utilization of an ensemble of parallel climate realizations, the change in
the intensity of atmospheric large-scale spreading of pollutants can also be investigated
in a changing climate. Due to the chaotic nature of the spreading of pollutants in three-
dimensional flows, pollutant clouds in the atmosphere expand in an exponential manner in
time. This phenomenon is illustrated in the left panel of Fig. 8 in which the time evolution
of a filament of initial length of 660 km (thick straight red line) is tracked for 10 days. The
inset shows that the increase of the length L of the filament is indeed exponential in time
t after some days: L(t) ∼ exp(ht). The rate of this exponential stretching, i.e. the quantity
h, is called the stretching rate [139,140]. In this case the stretching rate is h = 0.41 day−1

which implies that in t = 10 days the length grows by a factor of exp(ht) = 60.3 and the
filament becomes almost 40 000 km long.

The intensity of the spreading can be characterized in general by such stretching rates [139–
141]. This quantity corresponds to a measure of chaotic systems, the topological entropy (see,
e.g., [142]), in the atmospheric context. In [141] in order to explore what the typical spreading
behavior is in a changing climate, ensemble simulations of the PlaSim and CESM climate
models were used. In these ensembles the global mean surface temperature increased by
6 ◦C and 3.5 ◦C in a hundred years, respectively. Results showed that the stretching rate has
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Fig. 8 Left: Advection image of an initially 6◦-long filament on the 10th day after the initialization (thin
red curve) using meteorological data from a PlaSim climate realizations. Initial conditions: n0 = 1000 ideal
particles (corresponding to inert gas) initiated on December 1, yr 64 at 00 UTC at 30◦ E, 30◦ N, 500 hPa,
50◦ N (vertical thick red line segment). For precise length calculation, new particles are inserted between
subsequent particles if their distance becomes larger than 10 km. The inset illustrates the time-dependence of
the length of the filament and the exponential function fitted from day 3 to 10 (dashed line). The stretching rate
of the filament is h = 0.41 day−1. Bottom right: PlaSim CO2 forcing for the investigation of the stretching
rate due to climate change. Top right: Time-dependence, in 110 climate realizations (gray), of the December–
January–February seasonal mean stretching rate h averaged over a set of different filaments. These different
filaments are initialized as short meridional line segments distributed evenly along the latitude 30◦ S. The
ensemble mean is indicated by black color. The systematic trend is due to the indicated CO2 forcing. Data
source: [141] (Color figure online)

a typical zonal distribution: the smallest values can be found in the tropical belt, while the
largest ones are typical for the mid- and high latitudes due to the more enhanced cyclonic
activity in this region.

As a consequence of climate change, spreading simulations showed an overall decreasing
trend in the the stretching rate in the ensembles of both climate models. The right panel of
Fig. 8 illustrates how the December–January–February seasonal mean stretching rate changes
due to the prescribed CO2 forcing in the PlaSim simulations at 30◦ S. It is worth mentioning
that even the obtained decrease of approximately 0.02 day−1 in the ensemble mean (thick
black curve) during the investigated climate change period results in the fact that on average
the length of 10-day-old filaments becomes 82% of that of the typical filament lengths in
the stationary climate before year 50. This seemingly small decrease in h might cause larger
pollutant concentration for several regions, resulting in higher environmental risk.

Furthermore, in [141] strong correlation was found between the time series of the ensem-
ble mean values of the stretching rate and of the absolute value of the relative vorticity. This
relationship is useful for the estimation of the changes in the intensity of spreading as compu-
tationally costly dispersion simulations can be avoided since vorticity fields are operationally
generated by climate models.

10 Temporal Aspects: An Emerging Research Direction

10.1 Temporal Statistics

The traditional characterization of a multitude of climate-related phenomena is based on
analyses of power spectra. However, Fourier transformation is defined only for stationary
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time series, so that power spectra do not exist in a monotonically drifting climate in a strict
sense. This is actually rather intuitive, since the statistical or dynamical relationship between
two time instants separated by a given time is not temporally invariant any more: it depends
on when within the climate change either of these instants is chosen.

To characterize the relationship between temporally separated values of a given variable,
a “workaround” is to compute the correlation coefficient between two time instants with
respect to the time-dependent natural probability measure (with respect to temporally evolv-
ing ensemble members in practice). By fixing one of the time instants and scanning through
the time axis with the other time instant we obtain an analogue of an autocorrelation function.
However, this new function has an extra parameter, the choice of the reference time instant.
Or it might be better to simply say that this generalization of the autocorrelation function is
defined on two time variables.

For stationary time series, the power spectrum and the autocorrelation function are each
other’s Fourier transform according to the Wiener-Khinchin theorem [143]. While only one
of the two concepts exists in nonautonomous systems with a monotonic drift, this theorem
suggests that characterizing the system by an autocorrelation function in place of a power
spectrum is an appropriate approach. Further research is needed, however, to unfold how
the generalized autocorrelation function can be utilized for characterizing particular climate-
related phenomena and their change.

Statistical quantifiers of time intervals of nonzero length can be interesting in themselves,
too. For example, it is meaningful to compute the temporal average or standard deviation of
some variable for e.g. a given decade, but then this average or standard deviation will have
its own probabilistic description as defined via the time-dependent natural measure. The
probabilistic description of such interval-wise taken temporal statistics [29] will depend, of
course, on which decade is chosen. The ensemble average of this interval-wise taken quantifier
should not be confused with the corresponding ensemble quantifier of a time instant within the
given time interval: while these two characterizations coincide in a stationary climate, biases
are introduced if the climate is changing. For more details see Sect. 5 about nonergodicity.

A motivation for temporal averaging can be to improve the quality of the ensemble esti-
mation. On the one hand, fluctuations tend to be smoothed out in a given range of time
windows (from 5–10 days to 10–30 years) which is termed ‘macroweather’ in [144], so that
e.g. expectation values of interval-wise taken temporal statistics with interval lengths in this
regime can be estimated with increasing precision. On the other hand, one may consider the
ensemble estimation of a given time instant, and then try to improve its quality by temporally
averaging the ensemble estimation in a neighborhood of the given time instant. Of course, this
introduces bias to the estimation via the temporal evolution of the given ensemble quantifier,
but the gain in precision can be more important up to some neighborhood size (cf. again with
Sect. 5). In particular, the situation is rather favorable in the sense that the temporal evolution
is generally expected to be linear in a small neighborhood, and the bias only appears for
nonlinear trends, when the size of the neighborhood exceeds the linearizable regime.

10.2 Long Timescales in the System

The practical relevance and accessibility of the snapshot attractor and its natural measure
relies on the exponential convergence with a short time scale relative to the targeted time
span of the investigation. For example, for 21st-century climate projections, the time range
of interest is around 100 years, and the time scale of the atmosphere with a realistic depth of
the mixed-layer ocean in PlaSim is a few decades at most [39,59]. Similarly, the atmosphere
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and the upper ocean (complemented with sea ice and land) have decadal time scales and
convergence times in any Earth system model, see Sect. 4.4.

However, the deep ocean has time scales of thousands of years. Taking into account the
full variability (the full extension of the attractor) in these oceanic variables might prove to
be unfavorable for century-long climate projections. If considerable amount of variability
nevertheless emerges within a century, then neglecting it would also be erroneous, and the
snapshot attractor approach might prove to be of limited suitability for such analyses.

There are two possibilities that would nevertheless make the snapshot attractor approach
appropriate. First, deep oceanic variability may prove to be uncorrelated with the rest of the
system. Second, if the separation of long and short time scales is sufficiently large, one may
treat the variables of the deep ocean as “frozen-in” and speak about a conditional natural
measure corresponding to given values of the deep oceanic variables. Even if the variation
of these variables is not completely negligible, a nonautonomous analogue of the singular
perturbation theory of slow-fast systems [25] may help.14 Preliminary analyses of the MPI-
ESM suggest that both an uncorrelated nature of fluctuations and time-scale separation might
actually be realized, but careful further research will be crucial for drawing conclusions.

11 Conclusion

We have shown that the diversity of our Earth’s climate is characterized by the difference
between parallel climate realizations rather than the variability that we experience in our own
past. An appropriate mathematical tool is the concept of snapshot/pullback attractors. These
are objective entities reflecting the internal variability of the climate. Fortunately, they can
be well reproduced numerically in models of the climate system: the convergence time tc is
short, and typical properties, e.g. spatial correlations to characterize teleconnections can be
investigated even in large numerical models.

The concepts of the average and the deviation from it also appear in the IPCC report [6],
but it also considers averages taken over different climate models relevant. The report uses
multimodel ensembles without dealing with large ensembles in the individual models. The
different models, however, describe climates of “different physics”, the differences of which
do not reflect the internal variability of the climate, rather the perhaps significant inaccuracies
of the models. In the spirit of the article, it seems more appropriate to evaluate projections
within single models based on parallel climate histories.

Finally, we wish to briefly address the characterization of model uncertainties within a
single climate model. This can account e.g. for uncertainties in the parametrizations of unre-
solved processes (e.g. convection or different diffusive processes): the parameters appearing
here are not physical constants and may originate from a restricted set of observations or
simulations of a given process. Let us assume that a model parameter p is uncertain, that
is p = p0 + η, with the random variable η following a probability distribution which we
have access to. For simplicity, the value of the random variable η is assumed to be constant
in time, which is reasonable if p represents (possibly unresolved) model physics.15 We then
construct a parameter ensemble, by carrying out an ensemble simulation with a fixed param-
eter p corresponding to a particular realization of η, and repeating this with other realizations

14 In an even “softer” framework, one might, in principle, just take a conditional distribution with respect to
certain initial conditions [61], but objectivity is practically lost with this choice.
15 In principle, the unresolved processes, which are taken into account in parametrizations, may vary during
climate change. Such variation are, however, never taken into account in Earth system models.
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of η.16 A measure of model uncertainty can be the standard deviation (with respect to the
realizations of η) of an observable quantity’s ensemble average (with respect to the parallel
climate realizations). That is, for a general observable quantity A we carry out parallel climate
simulations with a fixed parameter p0 +η, evaluate the ensemble average, and then compute
the standard deviation with respect to η. This can be defined for any instant of time:

σ
(η)
〈A〉(t) =

√
〈〈A(t)〉2〉η − 〈〈A(t)〉〉2

η. (9)

We also note that in this framework, the best estimate of the mean value of the observable
quantity A is obtained through the double average 〈〈A(t)〉〉η. More generally, the notion of
internal variability can also be extended by its best estimate: for example, the best estimate
of its strength is (with the notation used previously) 〈σA〉η. Dividing (9) with this quantity,
a dimensionless measure of model uncertainty is obtained. A detailed investigation of these
and similar quantities is beyond the scope of our paper, and might be the subject of future
studies.
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Appendix A: Snapshot/Pullback Attractors in Elementary Calculus

Here we show that the concept of snapshot/pullback attractor is implicitly part of elementary
calculus. In the class of dissipative linear ordinary differential equations it is strongly related
to the concept of particular solution. As an illustrative example, let us consider a second order
inhomogeneous equation of constant coefficients (an example in a first order equation was
given in [9]):

ẍ = −ax − bẋ + f (t) (10)

where a, b > 0 and f (t) represents a driving force (a driven, damped harmonic oscillator
subjected to an arbitrary time-dependent driving).

As we know (see e.g. [145]), the general solution is

x(t) = C1eλ1t + C2eλ2t + xp(t), (11)

where xp(t) is any particular solution. The initial condition x0, v0 prescribed at some time
t0 is fulfilled by an appropriate choice of C1 and C2 requiring x(t0) = x0 and ẋ(t0) = v0.
Due to dissipation, the real part of both exponents is negative (we order them such that
0 > Re(λ1) > Re(λ2)), hence the exponential terms decay rapidly (faster than any power
law).

16 Note that this construction is exactly the same as for the climate sensitivities (2)–(3), just repeated several
times and typically for some different choice of the parameter p.
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Since xp(t) is independent of the initial condition x0, v0, t0 in (11), it also follows from
the above that the difference between any two particular solutions x ′

p(t) and x ′′
p (t) can be

written as
x ′′

p (t) − x ′
p(t) = A1eλ1t + A2eλ2t . (12)

As a consequence, any two particular solutions converge to each other: after a few multiples
of the relaxation time τ = −1/Re(λ1), they coincide with exponential accuracy.

According to (12), the object to which any particular solution converges is also obtained
in the limit when the initial conditions are prescribed in the remote past: t0 → −∞. By
definition, this object is the pullback attractor x∗(t) of the system, and, in view of (12), it is
obtained as one of the particular solutions, which we shall call the ‘bare particular solution’
xbp(t):

x∗(t) = xbp(t). (13)

The other phase space component, the velocity, of the pullback attractor is of course v∗(t) =
ẋ∗(t).

At any finite time instant t ′ the slice of the pullback attractor, the snapshot attractor,
is x∗(t ′) = xbp(t ′), a single number. On the (x, ẋ) phase plane, the snapshot attractor
(x∗(t ′), ẋ∗(t ′)) = (xbp(t ′), ẋbp(t ′)) is a point. The snapshot attractor of this system is thus
fixed-point-like, but this “fixed point” is moving in time.

As a specific case, let us consider a linear driving force: f (t) = ct +d . The bare particular
solution is also of this type, xbp = At + B: xbp is a particular solution, and any addition of
exponential functions as in (12) vanishes for t0 → −∞. The values of A and B follow after
substitution, and we finally obtain the pullback attractor as

x∗(t) = xbp(t) = c

a
t + d

a
− bc

a2 . (14)

The snapshot attractor at time t ′ is (x∗(t ′), ẋ∗(t)) = (ct ′/a + d/a − bc/a2, c/a), a “fixed
point” moving with a uniform speed (c/a) parallel to the x axis.

As our last example, let us consider a combined case: a constant driving is present up to
time zero, but from there on a linearly changing forcing applies:

f (t) =
{

d for t ≤ 0,

ct + d for t > 0.
(15)

In other words, at time zero, t = 0, a kind of climate change sets in.
In the negative time region, the pullback attractor is obviously x∗(t) = d/a. For positive

times one particular solution is xp(t) = c
a t + d

a − bc
a2 as in the previous example. This solution,

however, does not fit to the pullback attractor characterizing the negative times since there
is a jump at time zero. Meanwhile, the pullback attractor has to be continuous, since it is a
solution of a differential equation of second order. Here we recall that A1eλ1t + A2eλ2t +xp(t)
is also a particular solution for t > 0. The coefficients A1, A2 can be chosen to make this
new particular solution join the constant solution at time t = 0 continuously. Since this is
how the constant solution continues for t > 0, this special particular solution is the pullback
attractor for positive times.17 The overall pullback attractor is thus given as

x∗(t) =
{

d
a for t ≤ 0,

c
a(λ2−λ1)

[(
1 + λ2

b
a

)
eλ1t − (

1 + λ1
b
a

)
eλ2t

] + d
a − bc

a2 + c
a t for t > 0.

(16)

17 Note that if the dynamics is defined only for t > 0, no pullback attractor can be defined, because the limit
t0 → −∞ is not defined either. Any particular solution nevertheless converges to a unique object, xp(t) =
c
a t + d

a − bc
a2 . The snapshot attractor can thus be regarded as x∗(t ′) = xp(t ′) for any t ′  τ = −1/Re(λ1).
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Fig. 9 Left panel: The pullback attractor of the system defined by (10) and (15), given by (16), represented
as the thick black curve. Several trajectories started from various initial conditions are shown with different
colors. Right panel: Evolution of the snapshot attractor in the phase space (x , ẋ). The points are time-colored
(darker colors show later time instants, starting from t ′ = 0). Parameters: a = 4, b = 5, c = −1, d = 0,
λ1 = −1 λ2 = −4, τ = 1 (Color figure online)

The pullback attractor described by (16) is displayed schematically in the left panel of
Fig. 9 (for the numerical choice of constants, see the caption). The pullback attractor starts
turning in the direction of the linear trend at the onset of climate change. The linear trend
is taken over with some delay, the length of which is on the order of the relaxation time
τ = −1/Re(λ1).

The right panel exhibits the snapshot attractors on the (x, v = ẋ) phase space. Color dots
mark the position of the attractor at subsequent time instants t ′, starting from t ′ = 0.

The individual trajectories marked with different colors all reach the pullback attractor
after a convergence time tc which is a multiple of the relaxation time τ : tc ≈ 3τ = 3. Here we
see again that after a convergence time tc, i.e. for t > tin + tc when initiation takes place at tin,
all trajectories properly represent the pullback attractor, irrespective of how the simulations
stars. A comparison with Fig. 3 shows a qualitative similarity. It is remarkable to see that the
convergence to the pullback attractor is of the same type both in a linear differential equation
and in a climate model. The real difference shows up in the character of the attractor, which
is chaotic-like/turbulent in the realistic case and exhibits unpredictability/internal variability.
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