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Abstract: We reviewed the literature on the role of temperature in transmission of zoonotic arboviruses.
Vector competence is affected by both direct and indirect effects of temperature, and generally increases
with increasing temperature, but results may vary by vector species, population, and viral strain.
Temperature additionally has a significant influence on life history traits of vectors at both immature
and adult life stages, and for important behaviors such as blood-feeding and mating. Similar to vector
competence, temperature effects on life history traits can vary by species and population. Vector, host,
and viral distributions are all affected by temperature, and are generally expected to change with
increased temperatures predicted under climate change. Arboviruses are generally expected to shift
poleward and to higher elevations under climate change, yet significant variability on fine geographic
scales is likely. Temperature effects are generally unimodal, with increases in abundance up to an
optimum, and then decreases at high temperatures. Improved vector distribution information could
facilitate future distribution modeling. A wide variety of approaches have been used to model viral
distributions, although most research has focused on the West Nile virus. Direct temperature effects
are frequently observed, as are indirect effects, such as through droughts, where temperature interacts
with rainfall. Thermal biology approaches hold much promise for syntheses across viruses, vectors,
and hosts, yet future studies must consider the specificity of interactions and the dynamic nature of
evolving biological systems.

Keywords: arbovirus; temperature; vector competence; vectorial capacity; flavivirus; alphavirus;
orthobunyavirus; phlebovirus; Culex; Aedes

1. Introduction

Global temperatures have increased by an average of 0.85 ◦C (0.65–1.06) from 1880–2012 [1].
The International Panel on Climate Change predicts a further acceleration of global temperature rise,
with an additional 1.4–3.1 ◦C (RCP 6.0) or 2.6–4.8 ◦C (RCP 8.5) by the end of the century if there is no
change to greenhouse gas emissions [1]. Temperature has been shown to have a significant influence
on the transmission of many infectious agents, including arthropod-borne viruses (arboviruses) [2,3].
This results from a range of effects of temperature on biological processes influencing host, vector and
virus. The complexity of enzootic transmission cycles makes understanding the role of temperature a
challenge. Here, we review the role of temperature in major zoonotic arboviruses (Table 1). Viruses
were limited to those that (1) are associated with human disease, (2) have a primarily non-human
amplifying host, (3) are primarily vectored by mosquitoes, and (4) have at least one study examining
temperature effects. We summarize studies examining temperature effects on Vector Competence,
Life History Traits, Blood-feeding Behavior, Vector and Host Distribution, and Viral Distribution; and
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subsequently address gaps in the field that should be the focus of future studies. Since the epidemiology
and ecology of each virus has been adequately reviewed elsewhere (Table 1) we focus exclusively on
the influence of temperature on transmission dynamics.

Table 1. Zoonotic mosquito-borne viruses commonly associated with human disease.

Species Primary Vector Primary Hosts Distribution 1 Human Disease

Togaviridae: alphaviruses

Eastern equine encephalitis
virus (EEEV) [4]

mosquito (Culiseta,
Culex) bird NA, C/SA febrile illness,

encephalitis

Western equine encephalitis
virus (WEEV) [5]

mosquito (Culiseta,
Culex) bird NA, C/SA febrile illness,

encephalitis

Sindbis virus (SINV) [6] mosquito (Culex) bird AF, EU, AS, ME,
AU

febrile illness,
arthralgia

Ross River virus (RRV) [7–10] mosquito (Aedes,
Culex)

mammals
(marsupials) AU febrile illness,

arthralgia

Barmah forest virus (BFV) [7] mosquito (Aedes) mammals
(marsupials) AU febrile illness,

arthralgia

Venezuelan equine encephalitis
virus (VEEV) [11]

mosquito (Aedes,
Culex)

small mammal,
equids NA, C/SA febrile illness,

encephalitis

Mayaro virus (MAV) [12] mosquito
(Haemagous)

non-human
primate C/SA febrile illness,

arthralgia

Bunyaviridae: orthobunyaviruses

Lacrosse virus (LACV) [13] mosquito (Aedes) small mammal NA febrile illness,
encephalitis

Bunyaviridae: phleboviruses

Rift Valley fever virus (RVFV)
[14,15]

mosquito
(Aedes/Culex),

phlebotomus flies

mammal
(ruminants) AF

febrile illness,
hemorrhagic fever,

encephalitis

Flaviviidae: flaviviruses

Japanese encephalitis virus
(JEV) [15–20] mosquito (Culex) bird, swine AS febrile illness,

encephalitis

Murray valley encephalitis
virus (MVEV) [21] mosquito (Culex) bird AU febrile illness,

encephalitis

St. Louis encephalitis virus
(SLEV) [22,23] mosquito (Culex) bird NA, C/SA febrile illness,

encephalitis

West Nile virus (WNV)
[15,24–27] mosquito (Culex) bird NA, C/SA, AF, EU,

ME, AS, AU
febrile illness,
encephalitis

1 NA = N. America, C/SA = C./S. America, AF = Africa, EU = Europe, ME = Middle East, AS = Asia, AU = Australia.

2. Vector Competence

Vector competence refers to the inherent capacity of an invertebrate host to become infected
and ultimately transmit a given pathogen. For mosquito-borne viruses, this requires infection of
the epithelial cells of the mosquito midgut following blood meal acquisition and digestion, efficient
replication of the pathogen in the gut, traversing of the basal lamina of the midgut to enter the
hemocoel, infection of/replication in the salivary glands, and sufficient accumulation of infectious
particles in saliva for transmission to competent hosts [28,29]. Numerous studies have documented
highly significant effects of adult holding temperature on vector competence for zoonotic arboviruses
of interest (Table 2; [30–49]). Increases in environmental temperature increase viral replication rates
in ectothermic hosts, and because viral dissemination is directly correlated to viral load [29,34,50,51],
temperature increases should generally result in shorter extrinsic incubation periods (EIPs) and
increased overall transmissibility. While this is largely the case, the magnitude of this effect is
variable and dependent on the virus species, virus strain, dose, mosquito species, and mosquito
population (Table 2; [30,31,37,44]). Kilpatrick et al. [37] demonstrated an accelerated EIP for the WNV02
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genotype strains relative to NY99 genotype strains which was magnified at higher temperatures, yet
similar studies by Danforth et al. [31] with distinct mosquito populations and strains measured no
strain-specific effect of temperature. Additionally, while replication and subsequently EIP is generally
accelerated, the effect on susceptibility is more variable and similarly species-dependent. For instance,
studies with Rift Valley fever virus (RVFV) found increased infectivity at increased temperatures for
Cx. pipiens [34] but no difference in infectivity at higher temperatures in Ae. fowleri [35]. There is
also likely a thermal limit to the correlation between competence and temperature that is virus and
mosquito-specific and independent from effects on mosquito fitness (addressed below). For instance,
Vogels et al. found increased competence from 18 to 23 ◦C in Dutch and Italian populations of Cx.
pipiens, yet further increases from 23 to 28 ◦C only increased competence in Italian Cx. pipiens [32].
While there are limited studies that demonstrate decreased competence above a thermal limit with
zoonotic arboviruses [33,45,46], this is likely a result of experimental design (most studies have utilized
maximum temperatures of between 28–32 ◦C). Although this review does not focus on arboviruses
which utilize humans as amplifying hosts, more extensive studies assessing thermal limits and the role
of interactions between mosquito genotype, viral genotype and temperature have been completed
with dengue, chikungunya and Zika viruses [52–59]. A recent study by Tesla et al. which studied Zika
virus competence at a temperature range from 16.0–38.0 ◦C found that competence was maximized at
30.6 ◦C with significant declines above 34.0◦C, and EIP accelerated up to 36.4 ◦C, followed by a steep
decline [54]. These relationships are likely to be highly variable with different virus strains and mosquito
populations. In fact, the influence of mosquito genetics could at times supersede the generic effects of
rising temperatures, even at relatively low temperatures, as has been shown by increased transmission
of dengue and chikungunya at lower temperatures in some mosquito populations [53,55,56]. Given the
specificity of these interactions, future studies with enzootic arbovirus should focus on establishing the
relationship of temperature to competence in individual populations with circulating viral genotypes.
In addition, a more thorough understanding of the mechanistic basis for population and strain-specific
interactions with temperature could significantly increase our capacity to utilize genetic surveillance to
predict regional impacts of climate change on arbovirus transmission.
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Table 2. Effect of temperature on vector competence for zoonotic arboviruses.

Virus Strain Species Population(s) Temperatures (◦C) Results

Chamberlain and Sudia,
1955 EEEV AR167 Ae. triseratus colony 21, 27, 32, 21–32

(fluctuating)
Decreased EIP with increased temperatures.
Fluctuating similar to mean temperatures

Hurlbut 1973 SLEV 1966 Cx. quinque-fasciatus San Antonio, TX
(colonized) 10–30 Decreased EIP with increased temperatures from

10–30 ◦C

Richards et al., 2009 SLEV TBH28 Cx. quinque-fasciatus Alachua/Indian River
Co, FL (colonized) 25, 28

Increased viral load and competence at higher
temperature (28 ◦C). Magnitude of effect is population,

dose and age dependent.

Takahashi 1976 JEV JaGAr #01 Cx. tritaen-iorhynchus Japan (colonized) 20, 28 Higher replication and competence at 28 ◦C.

Kramer et al., 1983 WEEV BFS1703 Cx. tarsalis Kern Co, CA,
F0/colony 18, 25, 32 Increased competence up to 32 ◦C to day 6. Decreased

competence from 25 ◦C to 32 ◦C beyond day 6.

Turell 1985 RVFV ZH501 Cx. Pipiens Ae.
taeniorhyn-chus

Egypt (Cx, colonized)
Vero Beach, FL (Ae.,

colonized)
13, 26, 33

Decreased EIP at higher temperatures up to 33 ◦C for
both species. Increased infectivity at higher

temperatures in Cx. pipiens.

Turell 1989 RVFV ZH501 Ae. fowleri Senegal (colonized) 17, 28, 17–28 (cycling) Similar infection rates and decreased EIP at higher
mean temperatures.

Turell 1993 RVFV
VEEV

RVFV ZH501
VEEV IC-V3000 Ae. taeniorhyn-chus Vero Beach, FL

(colonized) 19, 26 Lower rearing temperature increased susceptibility.
Higher holding temperature (26 ◦C) decreased EIP.

Brubaker and Turell, 1998 RVFV ZH501 Cx. pipiens Egypt (colonized) 13, 17, 19, 26 Increased competence (including infection) with
increased temperatures up to 26 ◦C.

Kay and Jennings, 2002 RRV B94/20 Ae. vigilax
Townsville,
Queensland
(colonized)

18, 25, 32 Similar competence among temperatures through day 7
PF. Decreased competence at day 14 PF at 32 ◦C.

Reisen et al., 2006 WNV, SLEV,
WEEV

WNV NY99, WNV
SA, SLEV BFS1750,

WEEV BFS1703

Cx. tarsalis, Cx.
univitattus

Kern Co., CA
(colonized) 10, 14, 18, 22, 26, 30

Decreased EIP and increased viral load with increased
temperature up to 30 ◦C and increased transmission

rate over 18 ◦C. Strain and species-specific differences
in magnitude of effect.

Cornel et al., 1993 WNV H442 Cx. univittatus Johannesburg, South
Africa F1-F8

14, 18, 23.5 (cycling), 26,
30

Decreased EIP and increased replication/competence
up to 26 ◦C (similar at 30 ◦C).

Dohm et al., 2002 WNV NY99 Cx. pipiens Westchester, NY F3-F4 18, 20, 26, or 30 Decreased EIP up to 30 ◦C and increased dissemination
and transmission rates over 20 ◦C.

Richards et al., 2007 WNV WN-FL03p2-3 Cx. quinque-fasciatus Gainesville, FL
(colonized) 25, 28, 30

Increased overall competence with increased
temperatures up to 30 ◦C, yet dissemination rates lower

at intermediated temperature (28 ◦C).

Kilpatrick et al., 2008 WNV NY99-3356
WN02-1956 Cx. pipiens PA (colonized) 15, 18, 22, 32

Increased competence with increasing temperatures up
to 32 ◦C and magnitude of increase is virus

strain-dependent.
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Table 2. Cont.

Virus Strain Species Population(s) Temperatures (◦C) Results

Anderson et al., 2010 WNV FL03p2-3 Cx. quinque-fasciatus Gainesville, FL
(colonized) 25, 28 Increased viral load and vector competence at 28 ◦C at

high and low virus dose.

Danforth et al., 2015 WNV NY99/COAV03,
KERN11 Cx. tarsalis Kern Co, CA

(colonized) 22, 30
Decreased EIP and increased transmission rates at
higher temperature (30 ◦C). No effect of viral strain

found.

Vogels et al., 2016 WNV Lin. 2, Greece 2010 Cx. Pipiens Cx.
Molestus hybrids Netherlands, F3-F5 18, 23, 28

Increased infection and transmission up to 28 ◦C for Cx.
pipiens and hybrids. Decreased competence from 23 ◦C

to 28 ◦C in Cx. molestus.

Danforth et al., 2016 WNV KERN11 Cx. tarsalis Kern Co, CA
(colonized)

14.2, 21.5, 26.5, 29 (mean)
11.0, 13.5, 10.1, 14.2 (DTR)

Decreased EIP and increased transmissibility with
increased temperatures. Results statistically similar to

constant temperatures.

Vogels et al., 2017 WNV Lin. 2, Greece 2010 Cx. pipiens Netherlands, Italy,
F4-F6 18, 23, 28

Increased infection and transmission from 18 ◦C to
23 ◦C in both populations and a further increase in

transmission in Italian population from 23 ◦C to 28 ◦C.
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While previous studies have focused primarily on the direct impact of temperature on viral
replication and competence in adult mosquitoes, there may also be indirect effects on vector competence
resulting from variable aquatic temperatures during mosquito development. In general, effects of
larval temperature are more apparent in Aedes spp. than Culex spp. Studies with Venezuelan equine
encephalitis virus (VEEV), RVFV, chikungunya virus and Ross River virus (RRV) demonstrated an
inverse relationship between larval rearing temperature and infectivity in Aedes spp. mosquitoes [36,45,
60], yet no effect was measured for RVFV in Cx. pipiens [49] Murray valley encephalitis virus (MVEV)
in Cx. annulirostris [61] or West Nile virus (WNV) in Cx. tarsalis [62]. These relationships could be
further complicated by additional environmental factors and larval density [63–65]. As temperature
alters development time and mosquito size [62,66–68], and size has at times been associated with
altered vector competence [69] this could be one important effect of temperature on competence, yet
recent studies demonstrate that larval temperature can also significantly alter stress and immune
gene expression [70], including influencing important proteins in the RNA interference pathway that
can directly alter susceptibility in adult mosquitoes [71]. Additional mechanistic studies are needed
to further probe how species and population-specific variability influences the impact of aquatic
temperatures and other environmental factors on vector competence.

3. Life History Traits and Blood Feeding Behavior

Although experimental studies assessing the potential impact of temperature change on pathogen
transmission have generally focused on vector competence, effects on development rates, longevity,
gonotrophic cycle and blood feeding behavior are likely to have a larger influence on patterns and
intensity of population-level transmission.

Increased aquatic temperatures accelerate immature development [62,66,68,72–79], yet for vectors
of enzootic arboviruses this effect is generally greater at lower temperature ranges (from 16.0 ◦C–25.0
◦C), as compared to increases over 25.0 ◦C [62,66,72], and may be highly dependent on temperature
fluctuation in addition to mean temperatures [59,72,80]. Although increased development rates in
isolation would increase population size, this could be offset to some extent by increased immature
and/or adult mortality, as well as decreased blood feeding, mating success, clutch size or hatch
rates [66,72]. Ciota et al. found increased larval mortality for Culex restuans at higher temperatures
(24.0 ◦C–32.0 ◦C), but no effect of temperature on immature survival with field populations of Cx.
pipiens or Cx. quinquefasciatus [66]. Conversely, Grech et al. found a positive correlation between
temperature and immature survival of Cx. quinquefasciatus from 16.6 ◦C to 25.2 ◦C [75], and a study
with Egyptian Cx. pipiens found decreased survival at simulated mean summer-autumn temperatures
(mean 30.2 ◦C) relative to winter-spring temperatures (mean 20.5 ◦C) [81]. Others have found a
unimodal effect of temperature, with optimal immature survival of Cx. quinquefasciatus measured at
23.0 ◦C [73], Cx. pipiens form molestus at 25.0 ◦C [72] and Cx. eduardoi at 28.1 ◦C [78].

Studies of adult longevity and temperature are generally in better agreement, with decreased
longevity at higher temperatures in ranges from 15.0 ◦C to 32.0 ◦C [72,73,81–83] and thermal thresholds
for Culex survival generally estimated at ~34.0 ◦C [72,78]. The effect of temperature on the Aedes
species may be less pronounced, although studies with enzootic vectors such as Ae. triseriatus and Ae.
japonicus are limited [84,85]. As with vector competence, studies with Ae. albopictus and Ae. aegypti
are more numerous and have generally demonstrated unimodal relationships for temperature and
longevity, with higher optimal temperatures and thermal thresholds than enzootic vectors which
generally originate from more temperate areas [54,86,87].

Blood feeding frequency, on a population level, should increase with development time and
temperature, yet this may not always be the case if mating and/or host seeking success is negatively
influenced by rising temperatures. Studies with Cx. pipiens and Cx. quinquefasciatus found an increased
likelihood of blood feeding with increased temperatures from 10 ◦C to 28 ◦C [88,89], yet feeding
rates could decrease at higher temperatures [66]. Differences at lower temperatures are additionally
influenced by photoperiod, demonstrating that multiple environmental cues influence diapause in
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some mosquitoes that overwinter as adults [89]. No effect of temperature on blood feeding probability
of Ae. triseriatus from 25.2 ◦C to 32.2 ◦C was found [85], yet extreme temperatures (<20.0 ◦C and
>35.0 ◦C) have been also been shown to decrease mating [90], and could therefore negatively impact
feeding frequencies.

As with vector competence, effects of temperature on life-history traits have been found to
be both species and population-dependent [66,83,88,91–93]. The variability in experimental results
demonstrates that making broad conclusions regarding the potential effect of rising temperatures on
vectorial capacity is difficult. One general trend that is apparent is that optimal temperatures for vector
fitness (i.e., temperatures at which population size is maximized) are generally lower than optimal
temperatures for pathogens (temperatures at which competence and extrinsic incubation rates are
maximized). Studies modeling transmissibility need to consider the differential effects of temperature
on all aspects of vectorial capacity. There are additional caveats to these experimental studies that need
to be considered. First, experimental studies, even those that have utilized fluctuating temperatures,
still fail to account for the range of fluctuation of temperature and numerous other potentially critical
dynamic environmental factors. Additionally, a number of studies have demonstrated that enzootic
arboviruses including WNV, Eastern equine encephalitis virus (EEEV) and La Crosse Virus (LACV)
can have significant impacts on mosquito longevity [50,94–96], fecundity [97] and blood feeding
behavior [98]. Whether or not such effects are variable at different temperatures or with different viral
strains has not been well studied but is suggested [83,96]. Lastly, the extensive variability on both the
individual and population level demonstrates that significant plasticity exists in response to changing
temperatures that likely has a genetic basis. This suggests that studies with current populations may
be inept representations of future populations, which theoretically could acquire increased fitness at
higher temperatures as a result of adaptive evolution.

4. Vector and Host Distributions

Temperature influences the distribution of vectors [99,100] and hosts [101,102] (Table 1). Mosquito
vector distribution information is available for species within the USA [103,104], Europe [105], and
globally [106,107]. Host distribution information is also available [108–110]. Birds are major hosts for
many of the arboviruses (Table 1) and the distribution of avian hosts is very well understood in the
USA [111–113] and relatively so globally [113].

Temperature effects on mosquitoes are generally thought to be unimodal [3], although the location
of the mode varies by species [114,115]. For example, Cx annulirostris, a major vector for RRV, had
increasing abundance with increasing temperature up to 32 ◦C (minimum ~10 ◦C), while Cx. australis,
another prevalent mosquito species in the same area, had peak abundance at lower temperatures (min
6 ◦C), but peak abundances were lower than for Cx. annulirostris [114]. Similarly, while increased
temperatures have been shown to increase Cx. pipiens, in some of the same regions, they have been
shown to decrease populations of Cx. restuans, involved in early-season amplification of WNV [115].
Vector distribution can also lead to non-intuitive patterns of disease outbreak. For example, seasonal
activity of RRV in Australia for a given vector species is later as one progresses from north to south.
However, seasonal activity begins earlier in some southern areas due to the presence of a vector species
that is active at lower temperatures [116]. Therefore, the direction of temperature effects vary by species
and by the specific study site within a species range (e.g., [116,117]).

Consequently, in epizootic areas and endemic areas on the low side of the temperature range for
arboviruses, an increase in temperature has often been associated with an increase in major vector
populations. For example, increased temperatures have been associated with increased abundance of
Cx. pipiens [115,118–121], a major vector for WNV. Increased temperatures have also been associated
with an extended Cx. pipiens season [121]. The northern limit of EEEV is likely temperature limited
due to lack of availability of suitable overwintering sites. Cs. melanura, the main vector for EEEV, is
active at low temperatures (1–5 ◦C) [122], but requires liquid water in order to overwinter as larvae
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(typically in aquatic habitat underneath trees) [123]. In Botswana, seasonal temperature was important
for Cx. pipens dynamics [124].

In regions with higher average temperatures, no effect of temperature variation may be detected, or
effects may be mixed. For example, in Senegal, three major RVFV vector species increased in abundance
with increasing temperature [125], but increased temperatures were associated with decreased RVFV
hotspot risk [126]. Cx. poicilipes in this region was also found to increase with increased minimum
temperature but decreased with increased maximum temperature [127]. Cx pipiens distribution in the
Middle East and North Africa was primarily driven by human population density and land cover, but
not by temperature or rainfall [128], although a local study in Saudi Arabia found temperature was an
important predictor for RVFV vector Cx. tritaeniorhynchus [129].

Vector distributions have been explicitly modeled through species distribution modeling (SDM)
(Reviewed in [130] and Table S2 of [3]). The geographic scope of these models is highly variable, with the
global distribution of Ae. aegypti and Ae. albopictus having been repeatedly studied [107,131–140]. Cx.
quinquefasciatus has also been studied globally [132,141]. Other species have global distributions (e.g.,
Cx. pipiens [142]), but to our knowledge have only been modeled within continents [143]. The capacity
of vectors to adapt to local conditions have also been evaluated using a species distribution modeling
(SDM) approach. The accuracy of SDMs has been evaluated using Ae. albopictus distribution for each
continent to predict its distribution on other continents [140]. Only moderate matches between the
predicted and actual distribution were found, suggesting that SDMs do not capture all factors of
relevance, which is consistent with critiques of these approaches [144]. Mathematical models have also
been used to model vector population dynamics [130].

Both vector and host ranges are forecast to shift further under future climate change. Cx. pipiens,
a major vector for WNV, is already present in new locations [145], and is projected to expand its range
further in Canada, especially under a high-greenhouse-gas emission scenario [143]. The distribution
of Cx. quinquefasciatus in California and Florida is predicted to decline in mid-to-late summer, but
may have increased populations during the winter [146], and range shifts are also anticipated under
climate change [141]. Broad analyses indicating expected range shifts due to climate change have been
performed [147].

5. Viral Distribution

A wide variety of models have been used to model temperature effects on arboviruses, including
Machine Learning techniques [148–150], a real-time Bayesian Ensemble Adjustment Kalman Filter
method [151], spatiotemporal Bayesian models [152,153], generalized linear models [150,154–157],
case-crossover approaches [158], seasonal autoregressive models [159,160], R0 models [3],
and Susceptible-Infectious-Recovered (SIR) and Susceptible-Exposed-Infectious-Recovered (SEIR)
models [3,124,151,161–167]. West Nile virus is by far the most studied enzootic arbovirus (Table 3).
Models have been reviewed for WNV [15,149,163,168], Japanese encephalitis virus (JEV) [15,16,20],
RVFV [14,15], RRV [7], and Barmah forest virus (BFV) [7,169,170]. Modeling studies on temperature
for remaining viruses include: EEEV [3,171], LACV [13], MVEV [3], Sindbis virus (SINV) [3,172,173],
St. Louis encephalitis virus (SLEV) [3,174], and Western equine encephalitis virus (WEEV) ([174–176]
and citations therein, [3]). Note that modeling studies that did not include temperature were omitted
here (e.g., EEEV: [177,178]). The treatment of temperature in environmental models varies substantially,
from simple statistical correlations to complex mechanistic models. Even mechanistic models vary
in complexity. On one end, temperature based on mean climatology has been used in a simple way
to correct for geographic differences [151]. At the other end, multiple life-history traits have been
synthesized into a single modeling approach [3].
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Table 3. Literature search results that include individual viruses and temperature as
keywords, 1983–2019.

Virus 1 # Studies Found 2 # Studies +
Temperature

% of Research on
Temperature

% of ALL Found
Studies on

Temperature

EEEV 608 34 6 3
WEEV 433 45 10 5
SINV 2873 4 195 4 7 20
RRV 843 70 8 7
BFV 178 19 11 2

VEEV 955 38 4 4
MAV 205 12 6 1
LACV 573 27 5 3
RVFV 1648 97 6 10
JEV 5426 137 3 14

MVEV 291 9 3 1
SLEV 3 687 49 7 5
WNV 11310 526 5 53

1 Virus abbreviations defined in Table 1; 2 literature search performed on 4 October, 2019. All others performed on
23 May, 2019; 3 search term: (Saint OR St) Louis Encephalitis virus; 4 most of the SINV results found here were
excluded from the review as they focused on molecular techniques unrelated to the virus in the environment.

Despite the variety of environmental models used and the range of arboviruses examined,
temperature effects have been relatively consistent. Within the main portion of the arboviruses’
range and along the cooler edge, an increase in temperature is typically associated with an increase
in arboviral activity. For example, WNV infection rates north of 30◦ N, have been associated with
increased temperatures [118,150,154–156,158,159,179–193]. An increase with increasing temperatures
has often been found for JEV as well [16,194–199], as has SLEV [200,201]. WEEV was associated
with increased risk with increased temperature in California’s Central Valley [176]. WEEV and SLEV
have both been associated with temperatures greater than 29 ◦C [202]. JEV incidence increased with
minimum and maximum temperatures in Jieshou county, China [203]. Temperatures above thresholds
of 25.2 ◦C for maximum temperature and 21.0 ◦C for minimum temperature were associated with
JEV in a temperate city in China [196]. Another study across all of China (approximately 50% of JEV
cases worldwide), found JEV to increase with increasing minimum temperature, but it increased and
then decreased with increasing maximum temperature [204]. Using minimum temperature, human
population density, mean temperatures, and elevation, they were able to identify a high risk area with
6% of China’s land area but 60% of JEV cases in China [204]. A similar pattern has been observed
south of the tropics, where there is concern that the Kunjin strain of WNV will shift further south in
Australia [205,206].

Low temperatures have been found to be limiting the distribution of many arboviruses. Low
temperatures are generally thought to be limiting WNV expansion northward [25,32,143,207–211].
Further, high temperatures have been observed to aid in the establishment of arboviruses. For example,
WNV often invaded new locations following heatwaves [44], but once established no longer required
such high temperatures to persist [27,212]. Indeed, simulations found that temperature was more
important in WNV establishment than mosquito population composition (i.e., biotype ratio of Cx.
pipiens), fraction of hosts that are birds, and the mosquito-to-host ratio [32]. At low temperatures (18 ◦C),
mosquito-to-host ratio has a greater influence on WNV establishment [32]. Similarly, amplification
of SLEV was estimated to stop at 17 ◦C [40,202] although the virus has still been detected in female
mosquitoes during winter and spring when temperatures were between 11–15 ◦C. SLEV has also
been predicted to expand further northward due to increased temperature suitability [213] as SLEV
outbreaks have generally occurred at or below the 21 ◦C isotherm [214].

A role of temperature has also been observed within the tropics. JEV vector abundance has also
been shown to increase with increasing temperature in India [215,216] but see [217] for the same study
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region where no significant correlation with temperature and JEV infection rate was found. Increased
minimum temperature with a 6-month lag was associated with increased JEV cases in Malaysia [218].

However, increased temperatures may cause decreases in arbovirus activity in hotter portions
of their range. For instance, high temperatures have been predicted to limit WNV in subtropical
regions [117]. WEEV risk has been predicted [213] and observed [176] to decrease in the southern
portion of its range with an increase in temperature. Cx. tarsalis is able to clear WEEV infections at
32 ◦C compared to 18 and 25 ◦C [213]. Transovarial transmission in Cx. tarsalis is increased for SLEV
at 18 ◦C relative to 27 ◦C [219]. Data on Cx. quinquefasciatus suggests that WNV will decline in some
portions of its Southern range with increasing temperatures [117,146]. Maximum temperature was
negatively associated with seroprevalence of RVFV, although there was a strong trend towards an
increase in seroprevalence with increasing night-time (minimum) temperature [220]. A large MVEV
outbreak occurred during 2010/2011 due to low temperatures and high rainfall [221].

Within the normal range of some viruses, environmental temperatures were not found to be the
main limiting factor. For example, rainfall and tides are the main environmental predictors for RRV [7]
and similarly RVFV is strongly tied to rainfall [14,222,223]. Rainfall was more strongly associated with
EEEV than temperature in Rhode Island, USA [171]. Rice fields, swine production, and percent of
humans and swine vaccinated were more important for JEV in some regions [17]. On the island of
Mayotte, where temperatures were suitable for RVFV, the import of an animal infected with RVFV was
the most important risk factor [224]. No direct temperature relationships were detected for SINV in
South Africa [173]. A study of seasonal and meteorological models aggregated by state in Australia
found relatively small improvements of adding weather variables for RRV and BFV, with the largest
improvements due to lagged variables [157]. Similarly, in Queensland, weather variables were not
found to predict RRV [225].

Statistical methods can also influence whether or not temperature is significantly related to disease
in a region. For example, temperature was correlated with JEV in Nepal, but was not retained in a
final model when other covariates were considered (precipitation, the percentage of irrigated land,
the percentage of grassland cover, and the pig-to-human ratio) [226]. Therefore, models may show a
temperature effect, but the effect may disappear when another relevant covariate is included.

5.1. Indirect Effects

Beyond direct temperature effects, temperature can influence arboviruses indirectly
through interactions with other variables. Drought has been found to be important in the
amplification of Flaviviruses, with a strong association between drought and drier conditions and
WNV [150,180,227–231] and SLEV [174,201,232,233]. Increased snow depth was predictive of increased
SINV in Finland [172], suggesting an indirect role of temperature on this virus. SLEV was found
to increase indirectly with low temperatures [234]: winter freezes in Florida were associated with
increased avian breeding success that resulted in a larger number of susceptible hosts [235].

5.2. Climate Change

Many arboviruses are expected to shift poleward under climate change, due to increasing
temperatures. Migratory birds with antibodies to WNV already arrive in northern Europe
(Sweden) [236], demonstrating that dispersal is not limiting arboviral activity in these locations.
WNV is expected to increase in Europe, even in locations where it is already present, under future
climate change [209], and to increase in range and intensity in Canadian prairies under a range of future
climate conditions [211]. Increased drought expected under climate change has the potential to triple
WNV cases over a 30-year time frame in locations where there is low human immunity [229]. In contrast,
increased rainfall has been predicted to lead to decreased WNV in some regions despite temperature
increases [208]. Increasing temperatures associated with climate change may have facilitated arboviral
spread up elevation gradients. For example, JEV has recently expanded into Tibet where it was formerly
thought to be excluded due to high elevation [237]. RRV is expected to increase in temperate areas, but
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decrease in tropical areas where it is endemic due to increases in temperature [167]. In contrast, MVEV
is predicted to decrease in summer and autumn in Western Australia due to higher temperatures
decreasing vector survival [238]. Risk for BFV has also been assessed and was not expected to change
much when both temperature and rainfall were included in the model [169].

5.3. Case Study: Season-Specific Effects in West Nile Virus in Temperate Regions

The role of temperature across seasons has been well-studied for WNV. While transmission season
temperatures are clearly important, temperatures in the non-transmission seasons can also affect
viral dynamics.

5.3.1. Winter Temperatures

Warmer winter temperatures have been associated with WNV across the continental US [155,179],
Russia [186,187] and in localized studies [160,191]. Low temperatures are sufficient to halt viral
replication (e.g., 14.3 ◦C or below for WNV in Cx. tarsalis [44]), although infections in mosquitoes
persist at these low temperatures and replication may resume in the spring [44,239]. Thus, it is expected
that winter temperatures are acting on vector populations. Other modes of overwintering (e.g., within
birds, reviewed in [240,241]) could provide increased capacity for seasonal maintenance that are less
sensitive to temperature variation.

5.3.2. Spring Temperatures

Warm and dry springs have been associated with WNV [154], especially maximum temperatures,
which are likely associated with increased early amplification [149]. Temperature in May and June
were linked to WNV in Russia [186]. Early-season temperatures were predictive of human cases later
in the year in South Dakota [190].

5.3.3. Summer Temperatures

Above average summer temperatures likely contributed to WNV epidemics in 2002–2004 [44] and
hot dry summers were also identified as associated with WNV foci in Connecticut, while warm wet
summers were associated with more distributed cases of WNV [242]. Minimum summer temperature
was found to predict human and mosquito cases in New York and Connecticut [149]. Increased
temperatures at a two-week lag interval were associated with WNV in Suffolk County, NY [152] and
Nassau County, NY [153]. August and September temperatures were associated with increased WNV
incidence in Russia [186]. Increased summer temperatures were associated with West Nile fever in
Europe [184,189]. In Romania, temperatures twenty days earlier were found to increase WNV infection
rates [227]. High temperature anomalies in July were linked to WNV outbreaks in Europe [184,243].
In contrast, in West Texas, a dry and cool summer following a wet spring was associated with increased
WNV cases [244]. In locations with high summer temperatures (i.e., deserts), habitat suitability for
WNV may be low during the summer [245]. In South Africa, an increase in minimum summer
temperature decreased WNV infection rates [173]. Similarly, summer temperatures have also been
linked to JEV in Japan [195].

5.3.4. Fall Temperatures

Dropping temperatures in the fall have the potential to end the West Nile virus season. However,
late season temperatures associated with the end of the WNV season have generally not been retained
in final models of WNV risk [e.g., 149]. One explanation for this is that changes in host behavior and
abundance are likely more important than temperature at this time of year [246].
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5.4. Case Study: Barmah Forest Virus

Temperature relationships for BFV are scale-dependent, but generally risk of BFV increases with
increasing temperatures. BFV was found to increase with increased minimum temperature based
on 0-, 2-, 3-, 4-, and 5-month lags in Queensland, Australia (using seasonal differencing to control
for seasonal effects) [247], and with increasing maximum temperature [248] (note exact attribution
is difficult as minimum and maximum temperature are strongly correlated in the region, Spearman
correlation coefficient of 0.93). BFV risk increased with increasing minimum temperatures in coastal
regions [169]. BFV risk was decreased with increasing minimum temperature at the scale of the entire
state of Queensland [170], but this effect could be due to a contrast between interior and coastal areas
rather than an inconsistent temperature effect (i.e., Simpson’s paradox [249,250]).

5.5. Case Study: Ross River Virus

RRV is an excellent example of a virus demonstrating a temperature optimum [3], although a
number of studies from different geographic regions have not reported an effect of temperature on RRV
after controlling for other variables [251–254]. A study summarizing 100 years of epidemics found that
relationships with temperatures varied by region, with an increase in minimum temperatures being
associated with RRV in Southern Australia, an increase in RRV associated with a decrease in maximum
temperatures in arid parts of Australia, and no strong relationship in tropical northern Australia,
where temperatures are routinely suitable for this virus [8]. At a regional scale (defined by cluster
analysis), the RRV risk decreased with increasing spring minimum temperatures in the northernmost
region (closest to equator), while in the southernmost (poleward) region, RRV risk increased with
increasing spring minimum and maximum temperatures, with two other regions showing no effect of
temperature [225]. Similarly, in Southern Australia, RRV infections increased with either increasing
monthly mean minimum or maximum temperatures [255] and temperature increased RRV risk in
Tasmania [256]. Temperature was included in a model used to forecast RRV risk 1–5 weeks in advance
in Western Australia [257]. Risk of RRV increased with increasing minimum temperature, except
in one area (Capel, in SW Australia) [257]. Risk also generally increased with increasing maximum
temperature, but decreased in Capel [257], and showed no effect in two other locations.

Temperature results in Queensland in northwest Australia have been variable, and this may be
due to the stronger effects of rainfall and tides [258]. One study found that RRV incidence increased
by 2.4% for each 1 ◦C increase (including a statistical correction for season) [259]. Temperature was
not significantly related to RRV in the city of Brisbane [260] in one study, but another study found
a negative effect of maximum temperature there [261]. Maximum and minimum temperature were
associated with RRV risk along the coast, but not inland in another study [262]. Maximum temperature
was weakly positively correlated with RRV in Townsville after accounting for other variables [263].

5.6. Case Study: Rift Valley Fever Virus

Temperature effects have also been detected in viruses where other factors have been shown to be
the main determinants of viral dynamics. Rainfall and vegetation have been found to be most predictive
of RVFV [264] and RVFV in south and east Africa was successfully predicted without consideration
of land surface temperature [265]. However, a mechanistic model based on water temperature and
surface area was used to examine a range of conditions theoretically expected to be favorable to RVFV
persistence and outbreaks [164] and in Kenya, minimum temperature was among the significant
variables included in a RVFV early-warning system [266]. Temperature factored into a mechanistic
model for RVFV in East Africa [267]. Temperature and precipitation effects were also included in a
SEIR model of RVFV in Tanzania, where an increased risk at low temperatures was found, despite
an increase in overall risk under climate change ([165], but see [268] where no effect of temperature
was observed). Cooler-than-normal temperatures regionally (~30 ◦C compared to ~40 ◦C) and heavy
rainfall were associated with RVFV in South Africa in 2010/2011 [221], but note that spatially, epidemic
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outbreaks were most likely to occur in regions with temperature >32 ◦C, and increased risk from 25–32
◦C relative to temperatures <25 ◦C [269]. Temperature was also included in a discriminant analysis of
RVFV in South Africa [270].

Temperature has also played a strong role in risk modeling for new locations. Temperatures
associated with mosquito development were used in modeling suitable locations in North Africa [271]
and Spain [272] for RVFV. Specifically, a minimum of 14 ◦C and a maximum of 40 ◦C were used,
with an optimum of 28–32 ◦C for enzootic suitability, and a linearly increasing risk for epizootic
transmission. Extrinsic incubation period and gonotropic period both decreased with increasing
temperature (increasing viral risk) in a model of locations suitable for RVFV in California, USA [166].
The model found that a RVFV outbreak was possible in all months except December and January.
A temperature-based model for the continental USA found that the number of risk days ranged from 0
in the far north to 325 in Florida [273].

6. Concluding Remarks and Future Directions

Thermal biology is emerging as a trait-based approach to studying temperature effects, especially
for arboviruses [3]. Two patterns in temperature relationships among arboviruses were revealed:
in some viruses, a strong role of temperature was clear across the virus’ range, while for others,
temperature was more important in setting the virus’ range, but not in governing dynamics within
that range. For example, WNV frequently increased with increasing temperature, even in locations
where it was endemic. In contrast, RVFV generally did not show strong temperature effects where the
virus was endemic.

The relationship between temperature and viral transmission may be complex due to the variety
of influences on different aspects of the ecology and biology of vectors, hosts, and viruses [3]. The fact
that temperatures effects can vary at multiple time scales (i.e., within days and across seasons) can
further complicate these relationships. Diurnal variations due to non-linear temperature relationships
are important [57], have been observed for WNV [183], and can be accounted for in analyses of
arboviruses [3]. Spatial variation in temperature is also important, and is not well represented on
fine scales (i.e., microclimatic variation) by gridded temperature products [274,275]. This can lead to
underestimation of vector-borne disease risk in some habitats and locations [276].

Where arboviruses are emerging, more refined spatial and temporal data could improve early
warning forecasting systems. High-quality, publicly available temperature data sets exist, but vector
species abundances and locations and virus infection rates need to be more publicly available in
accessible Geographic Information System (GIS) formats. Improved knowledge of vector and host
distribution would also be instrumental in improved forecasts of expected changes under climate
change. Host-vector interactions are additionally important, and the degree to which host choice
depends on temperature is also worthy of study. Host choice in Cs. melanura, for example, has
also been found to be temperature dependent [277], however temperature co-varied with season,
which needs to be controlled for in future studies. Temperature effects can vary by vector species
and even within populations of a single species. Vector and host populations can evolve and adapt,
and temperature will likely have significant effects on both the rate and trajectory of viral evolution.
For this reason, models need to be informed by experimental studies that consider not just how
changing temperatures interact with current biological systems, but also future biological systems.
Further, the degree to which temperature relationships interact with other environmental variables
(e.g., precipitation, insecticide resistance, vaccine development) should be considered. Defining these
complex and nuanced relationships over appropriate temporal and geographic scales, while daunting,
is critical if we are to accurately define how climate change will alter the transmission dynamics of
mosquito-borne viruses.
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