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Forecasting the effects of climate change on species and populations is a fundamental 
goal of conservation biology, especially for montane endemics which seemingly are 
under the greatest threat of extinction given their association with cool, high elevation 
habitats. Species distribution models (also known as niche models) predict where on 
the landscape there is suitable habitat for a species of interest. Correlative niche mod-
eling, the most commonly employed approach to predict species’ distributions, relies 
on correlations between species’ localities and current environmental data. This type 
of model could spuriously forecast less future suitable habitat because species’ current 
distributions may not adequately represent their thermal tolerance, and future climate 
conditions may not be analogous to current conditions. We compared the predicted 
distributions for three montane species of Plethodon salamanders in the southern 
Appalachian Mountains of North America using a correlative modeling approach and 
a mechanistic model. The mechanistic model incorporates species-specific physiology, 
morphology and behavior to predict an annual energy budget on the landscape. Both 
modeling approaches performed well at predicting the species’ current distributions 
and predicted that all species could persist in habitats at higher elevation through 
2085. The mechanistic model predicted more future suitable habitat than the correla-
tive model. We attribute these differences to the mechanistic approach being able to 
model shifts in key range-limiting biological processes (changes in surface activity time 
and energy costs) that the correlative approach cannot. Choice of global circulation 
model (GCM) contributed significantly to distribution predictions, with a tenfold dif-
ference in future suitability based on GCM, indicating that GCM variability should 
be either directly included in models of species distributions or, indirectly, through the 
use of multi-model ensemble averages. Our results indicate that correlative models are 
over-predicting habitat loss for montane species, suggesting a critical need to incorpo-
rate mechanisms into forecasts of species’ range dynamics.
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Introduction

Anthropogenic climate change poses a major threat to bio-
diversity, especially in montane regions (Parmesan 2006, 
Thuiller et al. 2008, La Sorte and Jetz 2010, Gottfried et al. 
2012). Some montane species have seemingly already 
responded to contemporary warming by contracting their 
ranges upslope (Parmesan and Yohe 2003, Wilson  et  al. 
2005, Moritz et al. 2008, Raxworthy et al. 2008, Rovito et al. 
2009, Chen  et  al. 2011, Feeley  et  al. 2013, Freeman and 
Class Freeman 2014). Given that mountains are centers of 
endemism and species richness for many groups of plants 
and animals (Myers  et  al. 2000, Körner and Spehn 2002, 
Graham  et  al. 2014), the erosion of the geographic distri-
butions of montane taxa is particularly alarming. Moreover, 
recent studies suggest that species inhabiting montane 
regions may have a limited capacity to adapt to changes in 
climate, even over evolutionary timescales (Smith et al. 2007, 
Li et al. 2009, Kozak and Wiens 2010a). Consequently, pre-
dicting the fates of species that make up montane biodiversity 
hotspots has emerged as a major challenge for biologists.

Correlative niche models have become the primary tool 
for forecasting the range dynamics of species under climate 
change (Thuiller et al. 2008). This class of models uses two 
types of data, species’ occurrence records and GIS-based maps 
of environmental variation (e.g. climate), to build statistical 
models describing the association between the contemporary 
environmental conditions and the presence of a species (Elith 
and Leathwick 2009). These models are then projected onto 
maps of future environmental conditions to predict whether 
the geographic distribution of suitable habitat for a species 
will shift, contract or remain stable (Peterson  et  al. 2002, 
Williams et al. 2003). Correlative niche models often predict 
extensive loss of climatically suitable habitats to the point of 
extinction, especially for species inhabiting montane regions 
(Williams et al. 2003, Thuiller et al. 2005, Milanovich et al. 
2010).

Correlative models make at least two important assump-
tions in the context of predicting species’ range dynamics in 
response to climate change. First, they assume that a species’ 
documented geographic distribution encompasses the full 
range of environmental conditions habitable by that species 
(Araújo and Peterson 2012). Second, they assume that corre-
lations between environmental variables and the processes set-
ting range limits remain fixed across space and time (Pearson 
and Dawson 2003). These correlative approaches may then 
do a poor job extrapolating into new, future environments 
where climatic variable values and combinations are differ-
ent from the current variable values used to train the model 
(Fitzpatrick and Hargrove 2009). Given that factors other 
than abiotic conditions can limit the distributions of species 
(e.g. species interactions) and that correlations among envi-
ronmental variables and range-limiting processes may change 
over time, some authors have argued that the range dynam-
ics of species cannot be predicted from current climate and 
species’ distribution data (Kearney and Porter 2004, 2009, 
Williams and Jackson 2007). Mechanistic niche modeling 

is a potentially powerful alternative that does not use spe-
cies’ realized geographic ranges to forecast future distribu-
tions. The mechanistic approach links functional-trait and 
climatic data to model spatial variation in parameters that 
determine whether a species can persist in a given location 
(e.g. energetics, development time, population size, species 
interactions). Because they focus on range-limiting biological 
processes, well-parameterized mechanistic models (i.e. those 
that include important mechanisms that limit species’ ranges) 
may provide more accurate predictions of species’ responses 
to climate change than correlative models (Kearney and 
Porter 2009, Buckley et al. 2010).

Do existing correlation-based forecasts signal the impend-
ing collapse of montane faunas and floras? Alternatively, can 
limitations associated with projecting correlative models 
beyond current environmental conditions explain the pre-
dicted drastic loss of suitable climates for montane endemics? 
These questions are critical to conservation efforts aimed at 
sustaining montane diversity in the face of climate change. 
Researchers have begun to compare the range dynamics that 
are predicted by correlative and mechanistic models (Hijmans 
and Graham 2006, Morin and Thuiller 2009, Buckley et al. 
2010, Kearney  et  al. 2010) and have incorporated mecha-
nistic variables into correlative approaches (Mathewson et al. 
2016). However, no comparative studies of correlative and 
mechanistic forecasts exist for narrow ranging montane 
endemics, which are predicted by correlative models to 
be under threat of extinction as a result of climate change 
(Milanovich et al. 2010).

Here, we compare the range predictions of correlative 
and mechanistic niche models for three salamander species 
of the genus Plethodon that are restricted to the Appalachian 
Mountains of eastern North America (Fig. 1). These spe-
cies (P. jordani, P. montanus and P. metcalfi) are mountaintop 
endemics that have restricted elevational and climatic dis-
tributions (Highton and Peabody 2000, Kozak and Wiens 
2006), making them ideal species for studying the sensitivi-
ties of forecasting future suitable habitat. Plethodon jordani 
is only found within the Great Smoky Mountains National 
Park at elevations >1200 m, making it the most geographi-
cally-restricted species used in this study. Plethodon montanus 
and P. metcalfi have wider geographic distributions, together 
spanning the states of Virginia, Georgia, South Carolina and 
North Carolina. However, both of these species are restricted 
in elevation, generally occupying forested habitats above 
>1000 m. The climatic niches of Plethodon species have been 
conserved, resulting in allopatric speciation as populations 
have tracked suitable climates during periods of environ-
mental change since the Miocene (Kozak and Wiens 2006). 
Climatic niche conservatism has also seemingly restricted 
many species in the clade from colonizing lowland climates 
(Kozak and Wiens 2010b, 2012).

In this study, we forecast and compare range dynam-
ics predicted by a widely-used correlative method (Maxent, 
Phillips et al. 2006) and a mechanistic model based on the 
climatic sensitivity of metabolism, surface activity and diges-
tive efficiency. Previous work using correlative models to 



483

forecast future suitable habitat predicts extensive range con-
tractions and local extinctions of salamanders that inhabit the 
southern Appalachian Mountains (Milanovich et al. 2010). 
We hypothesize that these dire predictions arise from correla-
tive models, parameterized using climatic variables that are 
good indicators of species present-day occurrence, needing to 
extrapolate beyond the training data to non-analog future cli-
mates. In contrast, given that our mechanistic model quanti-
fies organism-specific monthly energy gains and expenditures 
related to environmental temperature, we hypothesize that it 
will be able to 1) incorporate suitable future climates not cur-
rently represented by species present-day distributions; and 
2) identify temporal shifts in temperature variation that are 
relevant to organismal activity and occurrence. Both of these 
are predicted to result in more future suitable habitat. First, 
we test how well each model predicts present distributions. 
We then project the niche models into future environmen-
tal conditions and quantify the amount of area predicted to 
remain suitable in 2050–2060 and 2080–2090. We inspect 
some of the underlying reasons for discrepancies between our 
modeling approaches, investigating the potential for correla-
tive models to have issues extrapolating to non-analog climate 
and incorporating shifts in activity time. Finally, we examine 
how methodological choices of future environmental data in 
the form of global circulation models (GCMs) contribute to 
differences in predicted distributional extent.

Methods

Ground temperature

We generated high-resolution (90-m) layers of monthly maxi-
mum and minimum forest floor temperature estimates for 
present and future time periods using a model developed by 
Fridley (2009) for the Great Smoky Mountains National Park. 
All three species inhabit forested habitats within or in close 
proximity to the Great Smoky Mountains National Park, 
which allowed us to generate new temperature layers for pres-
ent day and future climates. Because of variability between 
GCMs, we created future temperature layers for fifteen differ-
ent GCMs and one GCM ensemble mean covering two time 
periods (2050–2060 and 2080–2090) resulting in 32 future 
climate ground temperature layers. This method estimates 
near-ground temperatures (~1-m) for the densely vegetated 
forest using data on incoming solar radiation, topographic 
shading, slope, aspect and soil moisture, along with model 
coefficients based on data gathered from ground level data log-
gers over the course of two years (Fridley 2009). The ground 
temperature model built by Fridley (2009) incorporates air 
temperature through the use of lapse rates (degree tempera-
ture change per meter elevation change) calculated from the 
elevation and average monthly maximum and minimum 
temperatures recorded at weather stations within the park. 

Figure 1. Salamander distributions in the southern Appalachians. Species ranges depicted by a 10-km buffered convex hull polygon based 
on localities obtained from US Natl Museum of Natural History used in niche model training and projecting, Plethodon jordani (purple, 
circles), Plethodon metcalfi (green, triangles) and Plethodon montanus (blue, asterisks).
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We calculated lapse rates for present and future climates from 
random points placed at a density of 1 per 80 km2 within a 
10-km buffered polygon of the species’ current range. Climate 
data were then extracted to points using the ClimateNA ver. 
5.21 software package (<http://tinyurl.com/ClimateNA>) 
based on methodology described by Wang et al. (2016). All 
other inputs were generated using methodology described by 
Fridley (2009) and are detailed in the supplementary mate-
rial (Supplementary material Appendix 2). We assumed that 
the other values used in the Fridley models would not change 
in the two future time periods. Precipitation in the southern 
Appalachians is not predicted to change drastically in the near 
future (Jiang et al. 2016), and other values, including radiative 
heating, stream location and topographic convergence index, 
are dependent on the topology and location, which should 
remain relatively constant.

Climate models

Creating future climate layers requires researchers to choose 
both a greenhouse gas scenario or representative concentra-
tion pathway (RCP) and a global circulation model (GCM). 
The choice of RCP is based on predictions for how individuals 
and governments will attempt to mitigate warming and curb 
greenhouse gas emissions (IPCC 2014). We used RCP4.5, 
which assumes greenhouse gas emissions peak in 2040 and 
then decline (IPCC 2014). We were primarily interested 
in how the correlative and mechanistic niche models differ 
in their projections in response to forecasts from different 
GCMs, therefore we chose an RCP that represents an inter-
mediate future greenhouse gas scenario. Many meteorological 
research centers have developed GCMs that simulate climatic 
responses to increased greenhouse gas emissions. Because of 
large uncertainties in the interplay of physical processes, 
feedback processes and parameterization, there is substantial 
variation in the predicted temperatures for different GCMs 
under the same RCP for a given future date (Buisson et al. 
2010, Wright et al. 2014). We ran both the correlative and 
mechanistic models for 15 GCMs (Supplementary material 
Appendix 1 Table A1.2). These 15 models represent major 
clusters of similar GCMs identified by Knutti et al. (2013) 
using hierarchical clustering from a distance matrix of 
monthly climate projections, which were locally downscaled 
by Wang  et  al. (2016) using the delta method. Compared 
to the scale at which the global processes simulated by each 
GCM operate, the southern Appalachians is a small region 
and inter-model variability between GCMs is therefore likely 
to be high. Ensemble-averaging using multiple GCMs has 
been suggested as a method to overcome some of the issues 
relating to inter-model variability (Fordham et al. 2011), so 
we also included a GCM ensemble mean projection of the 
same 15 GCMs.

Mechanistic model

We modeled spatial variation in energetics to predict the 
potential geographic distribution of the three Plethodon 

species and their future range dynamics under climate change. 
Our mechanistic model was based on models developed by 
Kearney and Porter (2004) and Buckley and Roughgarden 
(2005, 2006), and was modified to incorporate hydric con-
straints on salamander surface activity (Gifford and Kozak 
2012). This mechanistic model is based on the premise that 
viable populations cannot persist in locations where energetic 
costs exceed energetic inputs. For every 90-m grid cell within 
our 10-km buffer of each species range, we computed annual 
energy budget as the sum of monthly budgets based on ener-
getic inputs through potential foraging time, prey availability 
and digestive efficiency. Energetic costs are calculated from 
temperature-dependent metabolism and the cost of annual 
reproduction. Many of these inputs and outputs directly 
relate to the temperature on the landscape. For example, 
potential foraging time is computed as the time when sala-
manders can be surface-active based on preferred body tem-
perature (which results from modeled ground temperatures) 
and assumes animals forage until 10% of their body mass is 
lost through evaporative water loss (also related to modeled 
ground temperature). These computations were done using 
the R package biophys (Peterman 2014), which was devel-
oped based on the model used in Gifford and Kozak (2012) 
for P. jordani, although it is broadly applicable to organisms 
with available species-specific physiological, behavioral and 
ecological parameters. We used species-specific metabolic 
rates measured previously in our laboratory, while other 
parameters relating to reproductive expenditures and diges-
tive efficiency were based on prior work on related species 
of Plethodon. To parameterize the environmental variables in 
the mechanistic model, we used the high-resolution (90-m) 
model of temperature variation described above, and empiri-
cally-derived estimates of wind speed and 95% humidity. For 
more details of the mechanistic model, please refer to the sup-
plementary information (Supplementary material Appendix 
1 Fig. A1.1, Appendix 2).

To assess whether differences in the future suitable habi-
tat forecast by the mechanistic model resulted from changes 
in the time of year when the salamanders could be surface-
active, we compared the monthly potential foraging time 
(PFT) for P. jordani under current conditions and two future 
GCMs (HadGEM2-ES and CNRM-CM5). We chose to 
focus on these two GCMs as examples because the correlative 
model using HadGEM2-ES had the lowest predicted range 
retention and the predictions using CNRM-CM5 had the 
largest difference in suitable habitat between the correlative 
and mechanistic models. We ran the model for each GCM 
and month separately and extracted monthly PFT values for 
current known localities of P. jordani (n = 357 obtained from 
U.S. National Museum of Natural History).

A common criticism of mechanistic models is that the 
large number of parameters and uncertainty around param-
eter values is poorly understood and not well represented in 
model outputs (Peterman and Gade 2017). We assessed the 
effects of parameter uncertainty by performing a one fac-
tor at a time (OFAT) sensitivity analysis, where we altered 
a single parameter while leaving the others at the default 
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values (Supplementary material Appendix 2). A more ideal 
approach (when uncertainty around all parameters has been 
experimentally quantified) is to conduct global sensitivity 
analyses to address how simultaneously varying multiple 
parameters effects model predictions (Fordham et al. 2016). 
For the present study, implementation and interpretation of 
such an analysis is complicated by a lack of knowledge of 
biologically-realistic bounds in which to vary all the param-
eters in the mechanistic model. Therefore, we restricted our 
sensitivity analysis to evaluating how changing snout–vent 
length by 10% and changing minimum and maximum for-
aging temperature by 10% of the temperature range influ-
ences our model outputs for P. jordani under current and 
future conditions. We also analyzed the effect of using the 
metabolic rates of P. metcalfi and P. montanus on P. jordani 
distribution predictions, since this was the species-specific 
parameter included in the model. Using the metabolic rate 
equations for the other montane-endemic species allowed us 
to quantify the influence of species-specific metabolic differ-
ences and vary the metabolic rate equation parameters while 
retaining biologically realistic values. Of the species used in 
this study, P. jordani has the most well documented distribu-
tion and natural history; by focusing on this species for a 
sensitivity analysis we were better able to interpret the output 
of our model and compare our results with prior research 
(Peterman and Gade 2017).

Correlative model

We used Maxent ver. 3.3.3 (Phillips et al. 2006) to quantify 
the correlation between climate and georeferenced occurrence 
locations (obtained from the US Natl Museum of Natural 
History; P. jordani n = 357, P. metcalfi n = 283, P. montanus 
n = 188, after the removal of any points that were in the same 
90-m grid cell as another occurrence). Maxent is an approach 
for characterizing the probability that habitat is suitable at a 
given raster cell from incomplete information. In the context 
of modeling a species’ geographic range, it computes a prob-
ability distribution that describes the relative suitability of 
each grid cell as a function of the environmental variables at 
the known occurrence locations for the species (Phillips et al. 
2006). To facilitate direct comparison of the mechanistic and 
correlative models, while also avoiding over-fitting our cor-
relative model (Phillips et al. 2006), we used the same ground 
temperature monthly maximum and minimum environmen-
tal layers at a 90-m spatial resolution to construct bioclimatic 
variables (annual mean temperature, maximum temperature 
of the warmest quarter, and minimum temperature of the 
coldest quarter). By using the results of the ground tempera-
ture model, we were able to work at a finer resolution than is 
available with other open-source bioclimatic data. We focus 
on these three bioclimatic variables because 1) they most 
closely parallel the variables used to generate surface activity 
time in the mechanistic model; and 2) they are the tempera-
ture variables that have been used in other studies to model 
Plethodon distributions (Cunningham et al. 2009).

As with most correlative modeling studies, we were 
restricted to running presence only models based on the data 
available. In this study, we did have a set of locality points for 
other salamander species that we used as absence points for 
analyzing model performance. We used a presence only model 
because these absence points were sparse and studies rarely 
have access to absence points. The three species of Plethodon 
that we focused on have robust locality data based on four 
decades of fieldwork by R. Highton. Present and future 
niches were modeled within a 10-km buffer of a convex hull 
based on current locality information. We randomly selected 
75% of the occurrence locations for model construction; the 
remaining 25% were set aside to test the model. Models were 
calibrated using default features, 10 000 randomly generated 
background points, 500 iterations, and a convergence thresh-
old of 0.0001. Each model was run ten times using subsam-
pling; thus a different 25% subset of points were set aside to 
test the model over 10 different runs and we used the aver-
age threshold and average log likelihood values across these 
runs. We investigated the impact of choice of regularization 
parameter on the resulting estimates of suitable habitat for 
P. jordani with all GCMs using the regularization values of 
1, 3 and 5; results were not significantly different (ANOVA, 
F2,87 = 0.17, p = 0.98) so we used the default regularization of 
1 for all Maxent models.

To evaluate to what degree the models were extrapolat-
ing in future scenarios, we plotted multivariate environmen-
tal similarity surfaces (MESS), which quantify the similarity 
between any given location in the future projection dataset 
and the training dataset (Elith et al. 2010). MESS output is 
in the form of a map, where negative raster values represent 
localities where at least one future variable in the projection is 
outside the range of variables used in the training dataset. We 
quantified the percentage of area within the convex hull of 
each species’ current distribution that had a negative MESS 
value, indicating extrapolation in at least one variable. We 
also visually checked where those areas of extrapolation were 
on the landscape.

Model performance

To examine the extent to which the mechanistic and cor-
relative models discriminated among presence and absence 
localities, we used the sensitivity and specificity indices of 
Manel et al. (2001). The sensitivity index measures the pro-
portion of true presences that were correctly predicted. The 
specificity index measures the proportion of absences that 
were correctly predicted. We also calculated the proportion of 
all locations that were correctly predicted and the true skills 
statistic (TSS), which has been shown to measure model per-
formance while avoiding potential statistical artifacts relat-
ing to prevalence (Allouche  et  al. 2006). To avoid using 
the same presence points to calibrate and validate the cor-
relative Maxent model, we used 75% of the data to calibrate 
the model, while the remaining 25% of the data was used 
to validate the model. Absences were defined using localities 
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from the Natl Museum of Natural History where R. Highton 
recorded occurrences of species of Plethodon, but not the spe-
cies of interest. Because of the thoroughness and protracted 
time period over which Highton conducted his surveys of 
plethodontid salamanders, we are confident that these points 
represent true absences (number of absence points not occur-
ring in the same 90-m grid cell P. jordani n = 50, P. metcalfi 
n = 27, P. montanus n = 96).

Implementation of these validation metrics required a 
threshold to transform probabilistic predictions of habitat suit-
ability into binary predictions of species presence and absence. 
For the mechanistic model, we considered any grid-cell with 
a discretionary energy value ≤0 unsuitable. We used Maxent 
to generate threshold values according to eleven metrics. The 
four threshold techniques that were able to correctly predict 
on average at least 85% of current presences and absences for 
the three species were the 10th percentile training presence, 
fixed cumulative value 10, maximum training sensitivity plus 
specificity, and maximum testing sensitivity plus specificity. 
The amount of suitable future habitat was not sensitive to the 
differences between these four thresholds, therefore we used 
the 10th percentile of training presence. This is the suitability 
threshold associated with the top 90% of the training presence 
records averaged across 10 replicate runs.

Model differences

We projected the modeled ecological niche onto future cli-
matic conditions using both niche modeling approaches. For 
each model type, we calculated the habitat suitability in the 
form of binary presence–absence predictions for each species 
at two climate snapshots (focused on 2055 and 2085) for 15 
GCMs and the GCM ensemble mean. We used a generalized 
linear model to explore the influence of modeling approach 
(correlative versus mechanistic), future time period (2055 or 
2085) and global circulation model (15 used in this study) 
on the percentage of suitable habitat retained between pres-
ent and future forecasts. We compared and ranked models 
including all combinations of these three predictors using 
Akaike’s information criterion with small sample size bias 
adjustment (AICc) in the R package MuMIn (Barton 2019).

Results

The mechanistic and correlative models produced highly 
congruent predictions of the contemporary range of each 
species. We found little difference in the extent to which the 
present-day climatic niche is over- or under-predicted based 
on the contemporary range. Table 1 shows that both the cor-
relative and mechanistic models had high overall prediction 
success (78–98%), high percentages of true positives cor-
rectly predicted (sensitivity 74–99%) and high percentages 
of true negatives correctly predicted (specificity 75–100%). 
The mechanistic model for Plethodon montanus produced the 
lowest values across all metrics.

AICc for each species supported a generalized linear model 
for change in suitable area that includes niche model (cor-
relative versus mechanistic), GCM, and year (Supplementary 
material Appendix 1 Table A1.5–A1.6). For most GCMs, 
the mechanistic model predicted that more of the currently 
suitable habitat would remain suitable in the future (Fig. 2). 
The mechanistic model predicted significantly more future 
suitable habitat compared with the future suitable habitat 
predicted using a Maxent/correlative approach. Whereas the 
correlative model predicted that P. jordani would persist on 
average in 19% of its current habitat across the 15 GCMs 
(16% using the GCM ensemble mean) by 2055, the mecha-
nistic model predicted it would persist in 51% of its current 
habitat (49% using the GCM ensemble mean) (Fig. 3). For 
P. metcalfi the mechanistic model predicted its persistence in 
34% of its current habitat across the 15 GCMs (25% for the 
GCM ensemble mean) in 2055, whereas the correlative pre-
dicted 26% (21% from the GCM ensemble mean) in 2055. 
Plethodon metcalfi currently occupies some moist microhabi-
tats at lower elevation, so the model in Maxent included habi-
tat suitability correlations for more sites, projecting less range 
contraction than for the other two species. For P. montanus, 
using Maxent we predicted that this species would lose all 
but 7% (4% from the GCM ensemble mean) of its suitable 
habitat by 2055, with the mechanistic model predicting an 
average retention of 20% of its currently suitable habitat (9% 
from the GCM ensemble mean). We note that some GCMs 
still predicted a loss of almost 100% of suitable habitat even 

Table 1. Model performance metrics for two niche modeling approaches. Data comparing the ability of the correlative and mechanistic 
models to predict known presence (sensitivity) and known absence (specificity), overall performance and true skill statistic (specificity + sen-
sitivity−1) for three species of Plethodon salamanders. Overall performance is the number of presence and absence points correctly identified 
divided by the total number of points.

Model Sensitivity (% Correct +) Specificity (% Correct −) Performance (% Correct + and −)
True skill  

statistic (TSS)

Plethodon jordani
  correlative 88%   98% 92% 0.86
  mechanistic 99%   90% 98% 0.89
Plethodon metcalfi
  correlative 87%   93% 88% 0.80
  mechanistic 81% 100% 83% 0.81
Plethodon montanus
  correlative 92%   75% 81% 0.67
  mechanistic 74%   85% 78% 0.60
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using a mechanistic model (Fig. 2, Supplementary material 
Appendix 1 Table A1.4). For maps of predicted suitable area 
using GCM ensemble mean (Fig. 4). Supplementary material 
Appendix 1 Fig. A1.2 for average suitable area across GCMs.

We tested how sensitive our mechanistic model results 
were to the parameter values that we used. Though we found 
that small changes in the input values for animal size and 
activity temperature range resulted in differences in the 

Figure 2. Comparison of predicted suitable habitat retention under correlative and mechanistic models for 15 GCMs for 2050–2060. 
Points represent global circulation models, colored by model, line for y = x. Points above the line represent instances where the mechanistic 
model predicted more suitable habitat than the correlative model.

Figure 3. Proportion of total area predicted to remain suitable in 2050–2060 and 2080–2090. Variation represents differences between 
projected suitable area under 15 different global circulation models. Correlative model results in white and mechanistic model results in 
grey. Proportion remaining suitable based on GCM ensemble mean represented by asterisks. AICc for each species supports a generalized 
linear model for change in suitable area that includes niche model (correlative versus mechanistic), GCM and year (Supplementary material 
Appendix 1 Table A1.5, A1.6).



488

amount of predicted suitable habitat, the result we were most 
interested in quantifying, percent change in suitable area 
between present and future climate, had low sensitivity to 
changes in parameter values. The mechanistic model using 
the default parameters and the GCM ensemble mean for P. 
jordani predicted 49% retention of suitable habitat in 2055. 
Changing the snout–vent length parameter by 10% resulted 
in the largest deviation in predicted suitable habitat retention 
among the parameters we tested (33% habitat retention with 
a reduction in animal length and 57% habitat retention with 
increasing the animal length parameter) (Supplementary 
material Appendix 1 Table A1.7).

To address why the two niche modeling approaches 
resulted in somewhat different future estimates of suitable 
habitat, we examined the extent to which the correlative 
approach was extrapolating to novel environmental con-
ditions, and for P. jordani whether the mechanistic model 
incorporated a shift in the time of year when salamanders 
were able to be surface-active. When using the correlative 
model, we found that GCMs that predicted less future suit-
able habitat had a larger area with negative (extrapolated) 

raster cells in the multivariate environmental similarity 
surface (MESS) maps (Supplementary material Appendix 
1 Fig. A1.3). This relationship could indicate that the high 
predicted loss of suitable habitat under these GCMs resulted 
from extrapolating beyond the training data. However, 
based on the Maxent MESS output maps for the three spe-
cies, all areas of extrapolation appear to be in low eleva-
tion areas (Supplementary material Appendix 1 Fig. A1.4). 
These low elevation areas are not currently inhabited by our 
focal species because they are climatically unsuitable, and 
therefore potential issues of extrapolation based on these 
low elevation areas do not affect our quantification of range 
loss in higher elevation areas. The response curves further 
indicated that the current warmer training temperatures 
for the three environmental variables are already associated 
with unsuitable habitat (Supplementary material Appendix 
1 Fig. A1.5).

We analyzed whether the mechanistic model incorporated 
temporal shifts in the time of year when one of our focal 
species, P. jordani, was able to forage to offset annual energy 
costs by comparing current monthly foraging predictions for 

Figure 4. Maps predicting suitable area based on current temperature data and future temperature data from the GCM ensemble mean. 
Inset map shows study region geographic extent with colored polygons of study area for each species. (A) P. jordani outlined in purple, (B) 
P. metcalfi outlined in green and (C) P. montanus outlined in blue. Grid cells are classified as unsuitable (grey), current distribution lost by 
2055 (blue), suitable area lost between 2055 and 2085 (orange) and area still suitable in 2085 (yellow).
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two GCMs for 2055. Potential foraging time (PFT) did shift 
temporally, with more PFT in March for the Hadley model 
and in November for the CNRM model compared to current 
predicted activity patterns (Fig. 5).

For each modeling approach and future time period, the 
predicted suitable habitat varied by at least an order of mag-
nitude based on the GCM that was used (Supplementary 
material Appendix 1 Table A1.4). While the mean values 
for predicted range retention across the tested GCMs were 
consistently higher for the mechanistic niche model, there 
was also more variation in the predicted suitable area among 
GCMs with the mechanistic model (Fig. 3). Overall, GCMs 
that predicted low or high future habitat retention in cor-
relative models also predicted low or high retention of suit-
able habitat in the mechanistic model (Fig. 2, Supplementary 
material Appendix 1 Table A1.4).

Discussion

Many montane species appear to be living near the upper 
thermal limits of their niches, making climate change one of 
the leading threats to montane floras and faunas (La Sorte 
and Jetz 2010). Correlative niche models predict that upslope 
migration of species will continue throughout the 21st cen-
tury, pushing many montane species to the brink of extinction 
(Williams et al. 2003, Thuiller et al. 2005, Milanovich et al. 
2010). We compared the forecasts from a widely used cor-
relative model (Maxent), to forecasts from a mechanistic 
model that incorporates processes limiting species’ ranges. As 
predicted by other studies (Milanovich et al. 2010, Moskwik 
2014), both Maxent and the mechanistic model forecasted 
that the ranges of all three species will contract upslope in 

response to warming. However, in this study we found that 
correlative models are likely to over-predict the amount of 
habitat that montane species will lose under climate change.

Correlative model under-prediction

Why does the correlative model, especially for Plethodon jor-
dani, seemingly fail to predict many of the future locations 
that the mechanistic model forecasts as climatically suit-
able? Correlative models are restricted to finding correlations 
between present environmental variables and occurrence 
data, which may not represent the processes that actu-
ally limit a species’ range (Fitzpatrick and Hargrove 2009, 
Elith et al. 2010, Araújo and Peterson 2012). Although the 
temperature variables used to construct the correlative model 
are associated with the range limit, they do not strictly reflect 
the underlying process that constrains the range (i.e. limits 
and costs to surface activity calculated in the mechanistic 
model). Two grid cells could have similar mean tempera-
tures, yet differ in the overall length of time that they are 
thermally suitable for surface activity and foraging, resulting 
in different forecasts of range dynamics between the mod-
eling approaches. Put another way, the mechanistic model 
is seemingly able to detect subtle temporal shifts in relevant 
climatic conditions throughout the year that the correlative 
model cannot.

Overall, our comparisons demonstrate that correlative 
models may overestimate range loss because of mismatches 
between bioclimatic variables (e.g. mean annual temperature, 
maximum temperature of the warmest month) and range-
limiting biological processes. Conversely, our results do not 
suggest that the correlative model forecasts less suitable habi-
tat in the future because of extrapolation to non-analogous 

Figure 5. Shifts in foraging time for P. jordani under two global circulation models. Average estimated monthly foraging time in hours for 
P. jordani at current localities for three climate scenarios: current temperatures (grey), predicted temperatures based on HadGEM2-ES 
(‘had’ in orange) and CNRM-CM5 (‘cnrm’ in blue). Maximum number of hours in a 30 day month is 360 and 31 day month is 372. Error 
bars represent the standard deviation of values across localities.
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climates (Briscoe et al. 2019). We found that areas identified 
by Maxent as having future temperatures ranges outside of 
the training conditions occur at lower elevations, areas that 
are not currently inhabited, or expected to be inhabited in 
the future. The current climate conditions used to train the 
correlative model already encompass the upper limit of tem-
perature tolerated by all three species.

Prior work using paleoclimatic modeling on P. jordani’s 
distribution supports the idea that the mechanistic model 
used in our study may forecast more realistic distributions 
when projected across different time periods. Luxbacher 
(2014) used the mechanistic model from Gifford and Kozak 
(2012) and Maxent to produce niche models for P. jordani 
within the Great Smoky Mountains National Park during 
the LGM. As with our future forecast, the hindcast of the 
correlative model predicted significantly less suitable area 
at the LGM with little overlap with the current distribu-
tion. Both the mechanistic model and the genetic data 
demonstrated that populations across the range of this spe-
cies were large and stable in size during the LGM (Highton 
and Peabody 2000, Weisrock and Larson 2006, Luxbacher 
2014). However, the correlative model failed to predict 
suitable habitat across most of this species’ range suggesting 
that the ability of the correlative model to predict future 
distributions in novel future habitats may be unreliable as 
well (Luxbacher 2014).

Mechanistic model sensitivity

By doing a local OFAT sensitivity analysis, we were able to 
quantify how small changes in key parameters affected our 
results. The main focus of our study was to compare differences 
in the percentage of habitat predicted to remain suitable by the 
correlative and mechanistic models under future conditions, 
which overall were not very sensitive to changes in parameter 
values. However, the amount of predicted suitable area under 
current and future conditions was sensitive to changes in 
parameter values. For example, lowering the minimum activ-
ity temperature resulted in a large decrease in suitable habitat 
for both current and future time periods. Intriguingly, even 
though this change increases the window of temperature 
in which salamanders could be surface-active, it results in a 
decrease in the annual energy budget (at temperatures below 
5°C our model predicts inefficiency in food intake, resulting 
in a greater net expenditure of energy). Increasing the maxi-
mum activity temperature increases foraging time and prey 
intake (particularly at lower elevations), but it also increases 
energy consumption because of the greater metabolic cost of 
activity at higher temperatures. The greater cost of foraging at 
warm temperatures is more pronounced in a future, warmer 
climate, which is why the percentage of loss goes up slightly 
with increasing the maximum foraging temperature, and the 
percentage of loss decreases with decreasing the maximum for-
aging temperature.

We restricted our sensitivity analysis to varying a single 
parameter at a time, focusing on parameters that we believe 
are most biologically relevant to predicting habitat suitability. 

Using an OFAT approach, however, meant we were unable 
to quantify how simultaneously considering uncertainty in 
a wide-range of parameters influenced loss of habitat suit-
ability. One possible shortcoming of this approach is that by 
accounting for uncertainty simultaneously across parameters 
the differences in habitat loss predicted by the mechanistic 
approach compared to the correlative approach could become 
less pronounced (Fordham et al. 2016). Nevertheless, recent 
studies on the ecophysiology of montane plethodontids sug-
gest that our results are likely to be robust. For example, mon-
tane plethodontids exhibit metabolic depression in response 
to warm temperatures (Markle and Kozak 2018), especially 
at the range edge (Bernardo and Spotila 2006), which could 
actually interact with the temperature window for surface 
activity by reducing metabolic costs, thereby resulting in even 
less habitat loss in the future than we predict here. Similarly, 
intraspecific clinal variation and plasticity in water loss rates 
along elevational gradients seemingly allows at least some 
montane plethodontids to persist in warmer and drier condi-
tions at the range edge (Riddell et al. 2018). Such plasticity 
could also interact with the temperature window for surface 
activity and allow salamanders to remain surface-active for 
longer periods of time before having to retreat because of 
dehydration stress at higher temperatures.

Future work on this system will benefit from global sen-
sitivity analyses that quantify how simultaneously consid-
ering variation around multiple parameters influences the 
predictions of the mechanistic model (Fordham et al. 2016, 
Peterman and Gade 2017). This type of global sensitiv-
ity analysis could also identify which parameters are most 
important to the outcome of our model and be used to guide 
experimental studies to generate more precise, species-specific 
parameter estimates.

Environmental data

In addition to the niche modeling approach, the environ-
mental input data played a large role in the predicted future 
distributions. Prior studies have found that GCMs induce as 
much variation in model results as RCPs (Wright et al. 2014), 
but without following a predictable outcome. As others have 
previously found (McKenney  et  al. 2011, Tuanmu 2012, 
Thorne  et  al. 2013, Wright  et  al. 2014, Goberville  et  al. 
2015), the choice of GCM had over a 10-fold impact on 
predicted range loss. Variation between predictions using 
different GCMs was more pronounced when employing the 
mechanistic model, which is likely explained by the finer 
temporal scale of environmental data necessary for the mech-
anistic model. For each species, there was at least one GCM-
mechanistic model combination that resulted in almost a 
complete loss of suitable habitat; some GCMs predict sub-
stantially more warming in the southern Appalachians. The 
degree of warming predicted by these circulation models is 
most likely intolerable for small montane Plethodon. However, 
with the mechanistic models there were many more instances 
with substantial range retention in comparison to the correla-
tive niche model for the same GCM.
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Some GCMs consistently predicted more future suitable 
habitat (INM-CM4 and MRI-CGCM3), while others con-
sistently predicted more future loss across species and niche 
modeling approach (HadGEM2-ES and GFDL-CM3). 
Employing a multi-GCM ensemble averaged forecast is a 
potential method for creating predictions that are likely 
to perform better than employing a single or few GCMs 
(Fordham et al. 2011), particularly for small regions such as 
our study region. These ensemble forecasts are already avail-
able on multiple platforms (see Wang et al. 2016 used in this 
study, or Fordham et al. 2012 for a more flexible framework). 
However, there is still much uncertainty in how the climate 
will change in the coming decades; it is important to capture 
and represent the range of predicted outcomes to incorpo-
rate climate uncertainty in conservation planning, especially 
when using global climate models to predict regional envi-
ronmental change.

Improving mechanistic models

Our goal was to employ a simple mechanistic model to 
forecast suitable habitat now and in the future. Given the 
availability of high-resolution ground-temperature data 
(Fridley 2009), and that elevational variation in temperature 
is strongly associated with the lower elevational range limit 
for P. jordani (Gifford and Kozak 2012, Lyons et al. 2016), 
we focused on this aspect of climate. However, we note 
that precipitation also influences surface-activity patterns 
(Connette and Semlitsch 2015), and likely shapes the range 
limits of montane Plethodon species. Thus, our model may 
oversimplify the role of soil moisture and time since precipi-
tation on surface activity (Peterman and Gade 2017). Recent 
work also suggests that there is room to improve parameters 
related to water-loss rate, which has been shown to be more 
plastic than previously assumed (Riddell and Sears 2015, 
Riddell et al. 2016). Finally, some of the parameters used in 
our model are based on related species and simplified bio-
logical phenomena; these are areas in which our mechanistic 
model could be improved with experimental species-specific 
information. Nevertheless, our mechanistic model per-
formed as well as the correlative model at predicting current 
distributions. The flexibility of mechanistic models means 
they can be modified to model more complex biological pro-
cesses as more species-specific data and new environmental 
layers become available.

Conclusion

In this study, we have demonstrated how taking a mechanistic 
approach can alter the projected range dynamics of narrow-
ranging montane endemics. We found that a mechanistic 
approach that incorporates species-specific biology predicts a 
less dire future for mountaintop salamanders in the southern 
Appalachians, especially for the most narrow ranging montane 
endemic we studied, P. jordani. In our study, future climates 
appear to present a challenge for correlative niche modeling 
because this approach does not identify subtle temporal shifts 

in climate that affect species activity times. We recognize that 
for many species building mechanistic models may not be 
feasible because of the whole-system understanding that is 
required. A hybrid approach using environmental layers built 
on a mechanistic understanding of species-specific biology 
that does not rely on correlations between simple climate 
variables and species distributions provides a promising ave-
nue for forecasting future distributions (Bateman et al. 2012, 
Mathewson et al. 2016, Methorst et al. 2017).

Species must be managed as dynamic entities in the con-
text of climate change. Knowledge of where climatically suit-
able habitats will be retained and lost, along with the size 
of those habitats, will be critical to the development of con-
servation plans that can preserve narrow-ranging montane 
endemics and the population processes that sustain them. 
The differences in predicted range loss between a correlative 
and a mechanistic model that we report here suggest a criti-
cal need to incorporate mechanisms into forecasts of species 
range dynamics, especially for montane salamanders.
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