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Abstract
Aim: The aim of this study was to understand the effects of revegetation on the 
diversity of bacteria and fungi in soil by sowing a single species and exploring the 
underlying mechanism.
Location: Beijing, China.
Taxon: Plants and Microbes.
Methods: In a short-term ecological restoration experiment, one natural recovery 
treatment and three seed sowing treatments were chosen to assess their effects on 
the alteration of fungal and bacterial diversity. Plant species richness, abundance, 
and height were investigated. The diversity of fungi and bacteria was analyzed by 
high-throughput sequencing technologies. Linear mixed-effects model analysis was 
used to examine the effects of different restoration methods on biodiversity and 
ecosystem functions. Pearson's correlation analysis, analysis of covariance, and 
structural equation modeling (SEM) were used to examine the relationship between 
biodiversity and environmental factors.
Results: Species richness and the Shannon–Wiener Index (H′) of plants in the sown 
treatments were lower than in the natural recovery treatment, especially with sow-
ing of Medicago sativa L. Similarly, the sum of the observed species and H′ of fungi 
and bacteria significantly decreased in the sown treatments. Moreover, plant density, 
community coverage, and soil moisture increased markedly, while soil bulk density 
decreased in the sown treatments. Importantly, SEM showed that sown treatments 
reduced the diversity of plants through increasing plant density, while it decreased 
the diversity of fungi and bacteria through decreasing the plant diversity and increas-
ing soil moisture.
Main conclusions: Our findings confirm that ecological restoration by sowing could 
improve soil conditions, but may be unfavorable to the amelioration of soil microbial 
diversity in the short-term. Restoration practitioners should consider long-term stud-
ies on the dynamics of biodiversity in the above- and belowground after revegetation 
by native species to achieve goals related to biodiversity conservation.
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1  | INTRODUC TION

During the past century, most ecosystems have experienced large-
scale degradation as a result of the increasing influence of human ac-
tivities, such as agricultural intensification and urbanization (Bullock, 
Aronson, Newton, Pywell, & Rey Benayas, 2011; Steffen et al., 2015). 
Ecosystem degradation often leads to a loss of biodiversity (Borer et 
al., 2014; Gossner et al., 2016; Tscharntke et al., 2012) and a reduction 
in the variety of ecosystem functions and services available worldwide 
(Millennium Ecosystem Assessment, 2005), thus causing a growing 
need for ecological restoration (Jackson & Hobbs, 2009). Ecological 
restoration efforts often aim to recover an ecosystem by revegetation 
(Sala et al., 2000). Common methods that are used in revegetation in-
clude prohibiting some or all human activities, sowing native species, 
and transplanting of native seedlings in the field sites (Corlett, 2016; 
Godefroid et al., 2011). Ecological restoration efforts have diverse ef-
fects on biodiversity because of the differences in restoration meth-
ods, ecosystem types, climate, and the degree of degradation that has 
occurred in the past (Barral, Rey Benayas, Meli, & Maceira, 2015; Falk, 
Schmidt, & Lena, 2014; Martin, 2017; Valliere, Zhang, Sharifi, & Rundel, 
2019). For example, the increase of biodiversity in restored areas has 
been significantly lower than in areas experiencing natural recov-
ery at a global scale (Rey Benayas, Newton, Diaz, & Bullock, 2009). 
Biodiversity increased more significantly in tropical terrestrial ecosys-
tems than in temperate terrestrial ecosystems after ecological resto-
ration (Rey Benayas et al., 2009). However, most of previous studies 
have focused on the effects of ecological restoration on biodiversity 
(Alexander, Aronson, Whaley, & Lamb, 2016; Cao, Shang, Yue, & Ma, 
2017; Lu et al., 2018), but less attention has been paid to the effects of 
different restoration methods, such as natural recovery, sowing plants, 
and transplanting seedlings (Valliere et al., 2019). Hence, having a com-
prehensive understanding on the effects of different restoration meth-
ods on biodiversity is vital for choosing suitable restoration methods.

Global policy commitments such as the Convention on Biological 
Diversity (CBD) support restoration actions that are increasingly 
being implemented throughout the world (CBD, 2012); one of the 
major goals of ecological restoration is to increase the biodiversity 
of degraded areas (Jordan, Peters, & Allen, 1988). The effects of 
restoration on biodiversity in aboveground habitats have been well 
demonstrated (Felton, Knight, Wood, Zammit, & Lindenmayer, 2010; 
Ilstedt, Malmer, Verbeeten, & Murdiyarso, 2007). Meta-analyses in 
specific ecosystem types, such as forests (Felton et al., 2010) and 
wetlands (Meli, Rey Benayas, Balvanera, & Martinez, 2014), have 
reported that biodiversity is altered significantly after ecological 
restoration. Meta-analyses at the global scale have found that the 
biodiversity in restored ecosystems was an average of 44% higher 
than in degraded ecosystems, but was an average of 14% lower than 
in ecosystems that experienced natural recovery (Rey Benayas et al., 
2009). The diversity of aboveground and belowground ecosystems 

is well known to be closely correlated with each other (Jing et al., 
2015). However, little attention has been paid to the effects of eco-
logical restoration on biodiversity in the belowground. Therefore, 
investigating the effects of restoration on diversity in the below-
ground facilitates gaining a comprehensive understanding on the 
effects of ecological restoration on biodiversity in general.

Soils host the vast majority of life on Earth including micro-
organisms and animals, such as viruses, bacteria, fungi, protists, 
nematodes, and earthworms (Geisen et al., 2019). Microorganisms 
(bacteria and fungi) may serve as possible bio-indicators for monitor-
ing soil ecosystem functions in close association with changes in the 
physicochemical and biological conditions during the ecological res-
toration of degraded areas (Mendez, García, Maestre, & Escudero, 
2008; Wang et al., 2012). Previous studies showed that the soil mi-
crobial community changed markedly after ecological restoration 
(Li et al., 2016; Yan et al., 2018). The results from Li et al. (2016) 
have shown that significant differences existed in the relative abun-
dance of bacteria in some phyla after restoration. Yan et al. (2018) 
observed that a dramatic shift in the fungal community toward that 
of the natural fungal community occurred after only 10 years of ac-
tive native plant revegetation. However, it remains unclear how the 
diversity of bacteria and fungi changes after revegetation.

The North China Plain covers an area of 440,000 km2, with plains 
accounting for 70% and mountains about 30% of the entire area in 
this vital agricultural region in China (Song, Deng, Yuan, Wang, & Li, 
2015). The second largest area of plains in China, the North China 
Plain, has experienced rapid ecosystem degradation (Ju, Kou, Zhang, 
& Christie, 2006; Song et al., 2015). Here, we report on a 1-year 
field experiment investigating the influence of different resto-
ration methods on soil microbial community diversity in a degraded 
farmland area on the North China Plain, based on two restoration 
methods. The first method involved a natural recovery treatment 
(stopping the interference from human activities). The second in-
cluded three sowing treatments, specifically the sowing of Medicago 
sativa L, Bromus inermis Leyss, and Agropyron cristatum Gaertn. We 
aimed to explore whether soil microbial diversity in the sown area is 
significantly higher than that in the natural recovery area, whether 
the dynamics of microbial diversity are affected by plant diversity 
in the aboveground, and whether any of the sown treatments can 
provide a better ecological restoration methods at the local scale.

2  | METHODS AND MATERIAL

2.1 | Site description and soil sampling

The experiment started in September, 2017, at Yanqing District, 
Beijing (116°0′30″E–1′30″E, 40°26′30″N–27′30″N, 492 m above 
sea level), which is located on the Northern China Plain. The 
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average annual temperature and precipitation from 2000 to 2018 
are 8.4°C and 467 mm, respectively. After Beijing became the suc-
cessful bidder for the 2022 Winter Olympic Games, numerous 
ecological restoration projects were implemented by the Yanqing 
Municipal Government while adhering to the concept of hosting a 
Green Olympics, especially for areas of abandoned farmland. Our 
study area was in the vicinity of an abandoned canal, covered an 
area of 27 hm2, and was once farmland; however, this land had been 
abandoned more than 10 years ago because the river ran dry, and 
construction debris had been abandoned here in some areas. Our 
experiment was conducted after the construction debris was re-
moved in 2017 (Li et al., 2019). The soil is currently a cinnamon soil 
(Chinese Soil Taxonomy Research Group, 1995). The dominant spe-
cies were Setaria viridis (L.) Beauv, Echinochloa crusgalli (L.) Beauv, 
and Artemisia annua L.

A two restoration methods experiment with a randomized design 
was conducted in 2017. Twenty seven plots were established in our 
study, with an area of 100–300 m2 per plot; these involved two dif-
ferent restoration methods, including natural recovery treatments 
(NR, six plots) and sown treatments. The sown treatments including 
three different species: sown with Medicago sativa (MS, nine plots), 
Bromus inermis Leyss (BS, six plots), and Agropyron cristatum (AS, six 
plots; Li et al., 2019). The seeds were selected based on the adapta-
tion of these plants to the local environment and because seeds of 
these plants are commercially available; seeds were sown without 
plowing in September, 2017, with the density of 200 seeds per m2 
for each species. In each plot, plant community was investigated in 
three randomly selected 1 m × 1 m quadrats in 2018. Three soil cores 
(diameter 7 cm) were taken in each quadrat and then mixed together 
into one sample. The soils were kept in a cooler and shipped while 
refrigerated to the laboratory as quickly as possible, where the soil 
was sieved to remove roots and stones, then each sample was di-
vided into two parts: one part was for biogeochemical analysis and 
was stored at 4°C; the second part was immediately packed in poly-
ethylene bags and then immediately submerged in liquid nitrogen for 
storage in the lab at −80°C prior to DNA extraction (Li et al., 2019).

2.2 | Vegetation and soil properties analysis

Plant species richness, height, abundance, and coverage were inves-
tigated in three 1 × 1 m quadrats for each plot. Soil bulk density (BD) 
and maximum moisture capacity (MMC) were measured using the 
soil core; soil pH was measured by a potentiometer after shaking 
a soil water suspension (1:2.5 water/soil) for 30 min; soil moisture 
(SM) was measured gravimetrically. Soil available phosphorus (AP) 
was measured by the sodium bicarbonate leaching-molybdenum-
antimony colorimetric method (Stahlberg, 1980), total phosphorus 
(TP) was measured by the sodium hydroxide melting-molybdenum-
barium colorimetric method (Bowman, 1988), soil organic carbon 
(SOC) and total nitrogen (TN; Walkley & Black, 1934) were meas-
ured by potassium dichromate oxidation and the Kjeldahl method, 

respectively. Soil available nitrogen (AN) was determined colorimet-
rically by automated segmented flow analysis. Soil cation exchange 
capacity and electronic conductivity were measured by the am-
monium acetate exchange and conductance methods, respectively. 
Total and available potassium were measured by ammonium acetate 
extraction-atomic absorption spectrophotometry (Li et al., 2019). 
Biogeochemical data are shown in Table 1.

2.3 | DNA extraction and PCR amplification

Microbial DNA was extracted from samples using the 
FastDNA®SPIN Kit for soil. The final DNA concentration and pu-
rification were determined by NanoDrop 2000 UV-vis spectro-
photometer (Thermo Scientific), and DNA quality was checked 
by 1% agarose gel electrophoresis. The V3-V4 hypervariable re-
gions of the bacteria 16S rRNA gene were amplified with prim-
ers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′) and the fungi 18S rRNA gene was 
amplified with primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) 
and ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′) by thermocycler 
PCR system. PCRs were conducted by the following program: 3 min 
of denaturation at 95°C, 37 cycles of 30 s at 95°C, 30 s for annealing 
at 55°C, 45 s for elongation at 72°C, and then a final extension at 
72°C for 10 min. The PCRs were performed in triplicate 20 μl mixture 
containing 4 μl of 5 × FastPfu Buffer, 2 μl of 2.5 mM dNTPs, 0.8 μl 
of each primer (5 μM), 0.4 μl of FastPfu Polymerase, and 10 ng of 
template DNA. The resulted PCR products were extracted from a 2% 
agarose gel and further purified by the AxyPrep DNA Gel Extraction 
Kit (Axygen Biosciences) and quantified using QuantiFluor™-ST 
(Promega) according to the manufacturer's protocol.

Purified amplicons were pooled in equimolar mixtures and 
paired-end sequenced (2 × 300) on an Illumina MiSeq platform 
(Illumina) according to the standard protocols by Majorbio Bio-
Pharm Technology Co. Ltd.

2.4 | Processing of sequencing data

Sequences were quality-filtered by Trimmomatic and merged by 
FLASH with the following criteria: (a) the reads were truncated at 
any site receiving an average quality score <20 over a 50 bp slid-
ing window; (b) sequences whose overlap was longer than 10 bp 
were merged according to their overlap with mismatch of no more 
than 2 bp; (c) sequences of each sample were separated according 
to barcodes and primers, and reads containing ambiguous bases 
were removed. Operational taxonomic units (OTUs) were clustered 
with 97% similarity cutoff using UPARSE (version 7.1 http://drive5.
com/upars e/) with a novel “greedy” algorithm that performs chimera 
filtering and OTU clustering simultaneously. We rarified the abun-
dance matrix to 1,000 sequences per sample to obtain normalized 
relative abundances.

http://drive5.com/uparse/
http://drive5.com/uparse/
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2.5 | Statistical analyses

The Shannon–Wiener Index (H′) was used to quantify the diversity 

of plants and microbes, using H� =−
∑S

i=1

ni

N

�

ln
ni

N

�

, where S is the 

sum of species (for microbes, Sobs represents the sum of observed 
species), ni is the number of ith species, and N is the numbers of indi-
viduals. The Pielou Evenness Index was used to assess the evenness 

of plant density, J= H�

ln(S)
. Dominant species included those with rela-

tive abundances higher than 5% (Ma et al., 2017). The effects of res-
toration methods on biodiversity were examined using linear 
mixed-effects models (R-function “lme”), in which restoration meth-
ods are used as the fixed effects, and the plot is used as the random 
effects. The relationship between the biotic and abiotic factors was 
investigated by Pearson's correlation and analysis of covariance. 
Structural equation modeling (SEM) was employed to evaluate the 
hypothesized underlying factors that influence biodiversity in 
above- and belowground under different restoration methods 
(Wang et al., 2017; Wang & Tang, 2019) using the package “piece-
wise-SEM” in R (Shipley, 2000). The restoration methods were con-
verted to numeric variables in the SEM, where 0 represents natural 
recovery, and 1 represent sown treatments. The model was assessed 
by Fisher's C statistic, Akaike information criterion (AIC) and AICc 
values, and p-values.

All statistical analyses and graphs were prepared in R 3.2.2 (R 
Core Team, 2018). Differences were considered to be statistically 
significant at p ≤ .05.

3  | RESULTS

3.1 | The effects of restoration methods on species 
diversity

Over the 1-year experimental period, the using of sowing for eco-
logical restoration significantly influenced the biodiversity in soil, 
but the effects varied in the different sown treatments (Figure 1 and 
Table 1). Species richness (Sobs of fungi) and the Shannon–Wiener 
Index (H′) of plants and fungi after sowing Medicago sativa (MS) 
were significantly lower than in the natural recovery (NR) treatment; 
specifically, plant species richness decreased 26.2% (three species 
[spp.]) and the Sobs of fungi decreased 36.8% (80 spp.) in the MS 
treatments. Meanwhile, no significant difference in the diversity 
of plants and fungi was observed between NR and Bromus inermis 
Leyss (BS) and Agropyron cristatum (AS) sowing treatments (Figure 1). 
When compared with the NR treatment, the Sobs and H′ of bacteria 
decreased 10.8% (133 spp.) and 3.2% in the sown treatments, re-
spectively (Figure 1c,f, Table S1). In addition, our results show that 
the relative abundances of fungi and bacteria at the phylum level 
were different among the two restoration methods (Figure 2). For 
the fungi, the relative abundance of Ascomycota in the MS treat-
ment was significantly larger than in the NR treatment, while that 
of Zygomycota was smaller in the MS treatment (Figure 2a and Table 
S2). For the bacteria, the relative abundance of Acidobacteria in the 
MS and BS treatment was significantly lower than that in NR. When 
compared with NR treatment, the relative abundance of Firmicutes 
significantly decreased, while that of the Proteobacteria increased 
after sowing (Figure 2b and Table S3). Moreover, we found that the 
coverage of the plant community in different restoration methods 

Soil property NR MS BS AS

pH 8.32 ± 0.07b 8.33 ± 0.04b 8.18 ± 0.05a 8.37 ± 0.05b

EC (us/cm) 123.5 ± 13.7 115.5 ± 7.6 134.7 ± 14.3 104.3 ± 9.5

CEC (cmol/kg) 8.39 ± 0.80 8.69 ± 0.93 9.70 ± 0.45 7.86 ± 0.96

SOC (g/kg) 11.40 ± 1.74b 7.75 ± 1.61ab 9.73 ± 0.78ab 6.10 ± 0.80a

AP (mg/kg) 10.48 ± 2.49 10.96 ± 2.20 9.52 ± 0.91 11.12 ± 3.25

AK (mg/kg) 146.2 ± 14.3 149.1 ± 14.6 171.5 ± 9.8 128.4 ± 21.7

AN (mg/kg) 36.55 ± 6.18b 24.96 ± 3.09a 28.49 ± 2.75ab 19.60 ± 2.27a

TN (%) 0.64 ± 0.07b 0.41 ± 0.06a 0.54 ± 0.04ab 0.37 ± 0.04a

TP (%) 0.43 ± 0.03 0.51 ± 0.05 0.55 ± 0.03 0.51 ± 0.04

SM (%) 7.48 ± 0.33a 8.70 ± 1.10b 8.11 ± 1.08ab 8.22 ± 1.31ab

MMC (%) 25.89 ± 1.34a 27.05 ± 1.36ab 33.82 ± 1.89b 28.76 ± 3.69ab

TSP (cm3/cm3) 0.57 ± 0.08 0.53 ± 0.05 0.48 ± 0.07 0.50 ± 0.10

BD (g/cm3) 1.41 ± 0.03b 1.37 ± 0.03ab 1.24 ± 0.05a 1.32 ± 0.05a

Note: Different letters (a, b, and c) within the same row indicate significant differences among 
restoration methods. Data shown are means ± SE (n = 6 or 9).
Abbreviations: AK, available potassium; AN, available nitrogen; AP, available phosphorus; AS, 
Agropyron cristatum Gaertn sowing; BD, bulk density; BS, Bromus inermis Leyss sowing; CEC, cation 
exchange capacity; EC, electrical conductivity; MMC, maximum moisture capacity; MS, Medicago 
sativa L sowing; NR, natural recovery; SM, soil moisture; SOC, soil organic carbon; TN, total 
nitrogen; TP, total phosphorus; TSP, total soil porosity.

TA B L E  1   Measured soil properties 
at the depth of 0–10 cm in different 
restoration methods
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showed no significant difference (Figure 3a), while the plant density 
and relative abundance of dominant species increased by 149% and 
46.3% after sowing (Figure 3b,d).

Soil properties changed significantly after sowing (Table 1). 
Soil organic carbon, total nitrogen, available nitrogen, and bulk 
density at the top soil decreased significantly, while soil moisture 
and maximum moisture capacity increased significantly in the 
sown treatments (Table 1). However, soil pH, electrical conduc-
tivity, cation exchange capacity, available phosphorus, and total 
phosphorus showed no significant differences between the NR 
and sown treatments (Table 1).

3.2 | Ecological factors influencing diversity of 
bacteria and fungi

Pearson's correlation revealed that diversity of plants was positively 
correlated with the diversity of fungi and bacteria, while it was nega-
tively correlated with plant density and available potassium (Figure 4 
and Table S4). The diversity of fungi was positively correlated with 
the diversity of bacteria, but negatively correlated with soil moisture 
(Figure 4 and Table S4). A significant positive relationship was found 
between bacterial diversity and soil pH, while a significant negative 
relationship was found between bacterial diversity and available phos-
phorus (Figure 4 and Table S4). Structural equation modeling showed 
that plant density explained 35% of the variation in plant diversity. The 
combination of soil pH and soil moisture, and the plant diversity jointly 
explained 44% and 44% of the variation in the diversity of fungi and 
bacteria, respectively (Figure 5). The negative effects of sown treat-
ments on plant diversity were mainly through its positive effects on 

plant density, while the negative effects of sown treatments on the 
diversity of fungi and bacteria were mainly through its negative ef-
fects on plant diversity and positive effect on soil moisture (Figure 5).

4  | DISCUSSION

Ecological restoration actions are increasingly being implemented 
throughout the world (Jackson, Lopoukhine, & Hillyard, 1995; Jackson 
& Hobbs, 2009). Ecologists have been exploring the re-establishment 
of the biodiversity and ecosystem function in the degraded ecosys-
tem through revegetation (Martin, 2017; Rey Benayas et al., 2009). 
Three aspects of our study, however, distinguish it from previous 
studies on the effects of ecological restoration on biodiversity. First, 
our study was conducted to examine the effects of different resto-
ration methods on biodiversity. Second, we examined the effects of 
ecological restoration on the diversity of plants, fungi, and bacteria. 
Third and most important, our study demonstrated that using sowing 
seeds for ecological restoration could improve the soil conditions but 
significantly reduced the diversity of fungi and bacteria.

4.1 | The effects of sowing on community 
structures and soil properties

Many studies, including those based on field observations (Alexander 
et al., 2016; Cao et al., 2017; Sheng, Zhen, Xiao, & Hu, 2019) and 
meta-analyses (Rey Benayas et al., 2009), have shown that ecologi-
cal restoration tends to improve the functioning of ecosystem. In our 
study, we found community traits and soil properties improved after 

F I G U R E  1   Diversity of plant, fungi, and bacteria in different restoration methods. Shown are (a) plant richness; (b) Sobs of fungi; (c) Sobs 
of bacteria; (d) Shannon–Wiener Index of plant; (e) Shannon–Wiener index of fungi; (f) Shannon–Wiener index of bacteria. The red line 
represents the average of three sown treatments. Different lowercase letters above the standard error bars indicate significant differences 
among treatments (p < .05). AS, Agropyron cristatum Gaertn sowing; BS, Bromus inermis Leyss sowing; MS, Medicago sativa L sowing; NR, 
natural recovery; Sobs, sum of observed species. Vertical bars represent the SEM (n = 6 or 9)
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sowing, such as an increase in community coverage, plant density, 
soil moisture, and reduction in soil bulk density (Table 1 and Figure 3). 
Given that plant density increased significantly in the Medicago sativa 
sowing treatment, as also found in other studies (Sun et al., 2015), one 
might hypothesize that the increase in plant density was the result of 
a larger seed bank following sowing. However, the experimental site 
is located at northern China, where a limited amount of soil nitrogen 
is available (Gruber & Galloway, 2008; Wang et al., 2014). Legumes 
can fix nitrogen by means of symbionts (Bordeleau & Prévost, 1994), 
making the fixed nitrogen available for other plants and organisms 
growth under N-limited conditions (Temperton, Mwangi, Scherer-
Lorenzen, Schmid, & Buchmann, 2007). Hence, we believe the ability 
of Medicago sativa to fix nitrogen caused a significant increase in plant 
density after sowing, while this did not occur in the Bromus inermis 
Leyss and Agropyron cristatum sowing treatments.

Soil moisture and bulk density are the basic features of soil and 
could be influenced by the dynamics of plant density and root biomass 
(Liu et al., 2018). The findings in our study showed that sowing resulted 

in reduced bulk density and increased soil moisture, which resulted in 
an increase in plant density (Figure 5). Where compared with the natu-
ral recovery treatment, plant density increased significantly after sow-
ing, which may have led to an increase in root biomass (Chapin, 1980); 
the increase in root biomass may have caused a decrease in bulk den-
sity and an increase in soil moisture (Craig & Fraterrigo, 2017; Guzman 
& Al-Kaisi, 2011). Moreover, with the increase in plant density, the de-
composition rate of soil carbon may increase significantly due to the 
enhancement of rhizosphere priming effects (Zhu et al., 2014), and this 
may then lead to a decline in soil organic carbon after sowing.

4.2 | Diversity of fungi and bacteria decreases 
after sowing

A growing body of evidence suggests that the plant diversity in a sow-
ing or planting area tends to be lower than in an area that recovers 
naturally from disturbance (Felton et al., 2010). Our findings reinforce 

F I G U R E  2   Relative abundance of fungi 
and bacteria at phylum levels in different 
restoration methods. Shown are relative 
abundance of (a) fungi and (b) bacteria. 
AS, Agropyron cristatum Gaertn sowing; 
BS, Bromus inermis Leyss sowing; MS, 
Medicago sativa L sowing; NR, natural 
recovery
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this idea. An important characteristic of sowing was that the relative 
abundance of dominant species was significantly greater than that in 
the area of natural recovery (Figure 3), a finding that has also been re-
ported in several other studies (Pywell et al., 2003; Rey Benayas et al., 
2009). In degraded ecosystems, the sown species had a greater ability 
to acquire nutrients and light (Wang et al., 2012), and quickly became 
the dominant species of community (Figure 3d), which left narrower 
niches available for the colonization of other species. Hence, few spe-
cies that both happen to be producing propagules and can disperse to 

the site will colonize, and thus the community will consist of only those 
few species capable of quickly reaching maturity (Connell, 1978).

Sowing not only had a negative effect on plant diversity (Cao et 
al., 2017; Rey Benayas et al., 2009), but also decreased the diversity 
of fungi and bacteria. Our findings revealed that the diversity of fungi 
and bacteria decreased significantly in the sown treatments for two 
reasons. First, a close relationship exists between plants and soil mi-
crobes, which is based on plant litter and root exudates (Jing et al., 
2015; Mcdaniel, Tiemann, & Grandy, 2016). The decrease of plant 

F I G U R E  3   Community structure of 
plant in different restoration methods. 
Shown are (a) plant coverage; (b) plant 
density; (c) Pielou Evenness of plant; (d) 
relative abundance of dominant species. 
The red line represents the average 
of three sown treatments. Different 
lowercase letters above the standard 
error bars indicate significant differences 
among treatments (p < .05). AS, Agropyron 
cristatum Gaertn sowing; BS, Bromus 
inermis Leyss sowing; DS, dominant 
species; MS, Medicago sativa L sowing; 
NR, natural recovery. Vertical bars 
represent the SEM (n = 6 or 9)

F I G U R E  4   Relationship between 
the Shannon–Wiener Index of species 
and environmental factors. The size of 
each circle represents the correlation 
coefficient of two parameters, blue and 
red circles represent positive and negative 
relationships, respectfully. The numbers 
below the triangles are the coefficients 
where black and gray numbers represent 
significant and insignificant relationships, 
respectfully. AK, available potassium; 
AN, available nitrogen; AP, available 
phosphorus; BD, bulk density; CEC, cation 
exchange capacity; Cp, plant coverage; Dp, 
plant density; EC, electrical conductivity; 
Hb, Shannon–Wiener Index of bacteria; 
Hf, Shannon–Wiener Index of fungi; Hp, 
Shannon–Wiener Index of plant; MMC, 
maximum moisture capacity; SM, soil 
moisture; SOC, soil organic carbon; TN, 
total nitrogen; TP, total phosphorus; TSP, 
total soil porosity
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diversity in the sown treatments was followed by a decline in the di-
versity of plant litter and root exudates, the reduction in heteroge-
neity of resources may induce a reduction of microbial diversity (He, 
Bazzaz, & Schmid, 2002; Prober et al., 2015), and thus led to a posi-
tive relationship between plant diversity and the diversity of fungi and 
bacteria. Secondly, the sown treatments altered the diversity of soil 
microbes through changing soil properties, such as soil moisture (Fierer 
& Jackson, 2006). Soil moisture increased with the increase of plant 
density in the sown treatments, which may have altered the commu-
nity structure of fungi and bacteria, and then resulted in a significant 
decrease in the relative abundance and richness of drought-tolerant 
species, such as Zygomycota and Firmicutes (Table S5; Wrighton et al., 
2008); thus, the sown treatments may cause a negative relationship to 
develop between soil moisture and the diversity of fungi and bacteria.

4.3 | Limitations of the current study

Spatial distribution of construction rubbish may have contributed 
to between-plot variability of biodiversity in the above- and below-
ground. The effects of restoration methods on the diversity of fungi 
and bacteria mainly occurred through changes in plant density, spe-
cies richness of plants, and soil moisture. However, the large spatial 
heterogeneity of plant density (42–2,221 stem/m2), plant species 
richness (3–12 species/m2), and soil moisture (4.03%–16.16%) may 
conceal the effects of restoration methods on the diversity of fungi 
and bacteria; thus more replications are needed to decrease the influ-
ence of site heterogeneity in the future. Moreover, the driver of the 
observed heterogeneity in fungal and bacterial diversity may change 
along time scales (Gao et al., 2019), especially in farmland, thus long-
term experiments are needed to evaluate the effects of different res-
toration methods on the diversity of fungi and bacteria in the soil.

5  | CONCLUSIONS

Because human activities continue to cause the loss of biodiversity and 
habitats, adaptive management approaches that enabled practition-
ers to establish stable plant communities are becoming increasingly 
important. Our results provide further evidence that revegetation by 
sowing of a single species led to a reduction in the diversity of fungi 
and bacteria in soil in the short-term. Importantly, the decrease in the 
diversity of fungi and bacteria in the soil was determined by a reduc-
tion in plant diversity. Further research that explores the application 
of sowing with a greater diversity of species and studies using multiple 
native plant species that can coexist will be useful in determining the 
use of this approach in biodiversity conservation.
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