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1 |  INTRODUCTION

Pests and pathogens can severely reduce food security by 
affecting crop yield and the quality of agricultural produce 
(Savary et al., 2019). The food-deficit regions in Africa with 
their fast-growing populations, in combination with emerg-
ing or re-emerging pests and diseases, suffer the highest yield 
losses. Africa is also in a highly vulnerable position with re-
gard to the negative impacts of climate change (IPCC, 2014; 
Niang et al., 2014). The Food and Agriculture Organization 
of the United Nations (FAO) has forecast that the current sit-
uation of food security is likely to deteriorate further over 
the next 50 years in Africa unless immediate action is taken 
(FAO, 2018). The number of people suffering from hunger 

as estimated by FAO in 2010 was 239 million in sub-Saha-
ran Africa. This figure is predicted to increase in the near 
future, and many climate change forecast scenarios are bleak 
(Sasson, 2012; Serdeczny et al., 2016).

Climate change models forecast future global warming 
trends with associated changes in rainfall patterns and in-
creases in average temperature and more frequent heatwaves 
(Davies-Reddy & Vincent, 2017). Such models also predict 
declines in the rainfall experienced in Southern Africa, while 
increased precipitation is predicted for East Africa (Figure 1).  
These predictions are especially worrisome for the pro-
duction of the major cereal and legume food crops, such 
as maize, wheat, sorghum, millet, beans, and groundnut, 
where losses of between 27% and 32% are predicted with a 
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warming of about 2ºC above pre-industrial levels by mid-cen-
tury (Schlenker & Lobell, 2010). Thornton, Jones, Ericksen, 
and Challinor (2011) estimated even higher mean yield losses 
(71%) particularly for beans under warming exceeding 4ºC. 
In contrast, cassava is the only crop with a better production 
forecast under these conditions as it appears to be more tol-
erant to higher temperature regimes and variable rainfall pat-
terns (Niang et al., 2014). Data from different models predict 
future crop losses for both maize and soybean (Fodor et al., 
2017). However, when carbon dioxide (CO2) fertilization ef-
fects are taken into account, significant yield gains are pre-
dicted for soybean, together with a shift in global production 
from the southern to the northern hemisphere (Foyer et al., 
2019).

Relatively little information is available in the literature 
on plant responses to different combinations of biotic and 
abiotic stress responses (Foyer, Rasool, Davey, & Hancock, 
2016). Atmospheric carbon dioxide (CO2) levels are for ex-
ample already well over 400 ppm and are increasing annu-
ally. Growth under high atmospheric CO2 had little impact 
on aphid performance on oilseed rape (Himanen et al., 2008). 
However, the performance of the pea aphid (Acyrthosiphon 
pisum) was decreased in free-air enrichment (FACE) studies 
of performance on Vicia faba (Mondor, Tremblay, Awmack, 

& Lindroth, 2005). Plants grown under elevated CO2 were 
more suitable hosts for A. pisum than those grown at ambi-
ent CO2. However, when plants were grown at elevated tem-
perature (30°C), the effect of CO2 fertilization on amino acid 
content was lost as was the enhanced susceptibility of plants 
to aphid infestation (Ryalls, Moore, Riegler, Gherlenda, & 
Johnson, 2015). These findings may be explained by recent 
reports of the differential effects of high atmospheric CO2 
and elevated temperatures on phytohormone signaling. Plants 
grown with elevated atmospheric CO2 levels show activation 
of salicylic acid (SA)-mediated defense pathways (Mhamdi 
& Noctor, 2016; Noctor & Mhamdi, 2017). In contrast, in-
creasing evidence suggests that elevated temperatures selec-
tively dampen the SA response, while jasmonic acid (JA) and 
abscisic acid signaling pathways are favored. Other observed 
changes in the plant foliage grown under elevated CO2 lev-
els (550 and 700 ppm) include altered the quality of peanut 
foliage (i.e., significantly lower leaf nitrogen, higher carbon, 
higher relative proportion of carbon to nitrogen, and higher 
polyphenols content expressed in terms of tannic acid equiv-
alents). Similar effects have been reported previously in other 
plant species and their interaction with pests (Bezemer & 
Jones, 1998; Hunter, 2001). These measured changes directly 
affected the tobacco caterpillar (Spodoptera litura) resulting 

F I G U R E  1  Progressively lower average rainfall has been recorded over the past five decades. Changes in measured rainfall (1960–2000) 
(Taken from Davies-Reddy & Vincent, 2017)
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in higher consumption, lower digestive efficiency, slower 
growth, and longer time to pupation (Rao, Manimanjari, et 
al., 2012a; Rao, Rama Rao, et al., 2012b). Similarly, elevated 
CO2 on maize resulted in a decrease in fitness of the Asian 
corn borer (Xie et al., 2015). Rising CO2 levels also include 
both indirect (i.e., changes in host plants) and direct (i.e., 
change in natural enemies) effects on insects (Guerenstein 
& Hildebrand, 2008). Climate change effects like moderate 
water deficit   stress in combination with high temperatures 
also negatively affected aphid survival even where night tem-
peratures were lower, and potentially could aid in the recov-
ery from direct heat stress (Beetge & Krüger, 2019).

While the relative importance of abiotic and biotic soil 
components can differ between plants and their herbivores, 
a study of the interactions between the aphid Schizaphis ruf-
ula and its host dune grass Ammophila arenaria revealed that 
aphid population characteristics were dependent on the abi-
otic properties of the soils in different growing regions, irre-
spective of whether soil biota were present (Vandegehuchte, 
de la Peña, & Bonte, 2010). Moreover, herbivore-induced 
resistance is likely to be constrained in plants growing on 
degraded soils because of JA-linked responses to prevailing 
abiotic and biotic stresses (Held & Baldwin, 2005). Of the 
abiotic properties of the soils, the availability of water and 
essential nutrients such as nitrogen and phosphate, is the 
most important in determining plant growth and productivity 
(Comadira et al., 2015).

Increasing global temperatures will not only have nega-
tive impacts on food production by directly influencing plant 
productivity, but they can also promote more frequent out-
breaks of pests and diseases due to enhanced insect growth 
and development, as well as increased ease of colonizing 
stressed plants (Mattson & Haack, 1987). Current crop losses 
due to insect pests in African countries are estimated to av-
erage about 49% of the total crop yield each year (Centre 
for Agriculture and Biosciences International, CABI, https 
://www.cabi.org/proje cts/food-secur ity/tackl ing-pests-disea 
ses/). These losses are expected to be even higher in some 
crops in the future as a result of climate change. Therefore, 
in the face of such predicted losses, novel strategies are ur-
gently required to control insects by either applying classi-
cal breeding approaches with improved markers for selection 
or by the discovery and implementation of new approaches 
that are designed to limit these losses. Furthermore, a recent 
study has specifically modeled the losses in the production 
of major cereal corps (i.e., maize, wheat and rice) and the 
associated increased pest incidence in response to global 
warming (Deutsch et al., 2018). In this model, global yield 
estimates are projected to decrease by up to 25% per degree 
increase in global mean surface warming (Dillon, Wang, & 
Huey, 2010). These authors suggest that predicted losses are 
the consequence of warming temperatures on increased in-
sect reproductive and metabolic rates, and hence greater food 
requirements. The median increase in yield losses owing to 

T A B L E  1  Estimated annual production losses because of the invasion of new pests (modified from Pratt et al., 2017)

Invasive insect pest Crop

Eastern African coun-
try where IAS currently 
recorded as present

Estimated current 
annual production 
losses to smallholders 
(million US$)*

Estimated future annual production 
losses to smallholders (million US$)
(5–10 year scale)(per country and 
in total)

Lower 
estimate

Upper 
estimate

Lower 
estimate Upper estimate

Chilo partellus (spotted 
stem borer)

Maize Ethiopia 61.3 73.2 47.9 56.6

Kenya 42.8 51.0 34.4 40.6

Malawi 104.3 139.1 82.5 106.1

Tanzania 30.0 42.4 26.5 37.1

Uganda 118.6 144.3 92.1 108.8

Liriomyza spp. (leaf-
mining flies)

Bean and pea 
(dry/ green)

Kenya 54.0 64.5 61.5 71.7

Tanzania 49.8 59.3 57.1 66.6

Uganda 21.3 25.3 25.1 29.3

Tuta absoluta (tomato 
leafminer)

Tomato Ethiopia 2.6 2.9 3.4 3.8

Kenya 45.9 52.4 59.8 66.5

Tanzania 20.4 23.2 26.5 29.5

Uganda 0.7 0.8 1.2 1.3

Cumulative losses     551.7 678.4 518 617.9

Cumulative losses 
(5 year scale)

        2,590 3,089.5

*Adjusted to gross production pre-losses. 

https://www.cabi.org/projects/food-security/tackling-pests-diseases/
https://www.cabi.org/projects/food-security/tackling-pests-diseases/
https://www.cabi.org/projects/food-security/tackling-pests-diseases/
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pest pressure is expected to be in the ranges of 46%, 19%, 
and 31% for wheat, rice, and maize, respectively for an in-
crease of 2°C in average global surface temperatures. This 
would result in total estimated losses to 59, 92, and 62 metric 
megatons per year (Dillon et al., 2010). In addition to the 
increased metabolic requirements of insect pests, changes 
in migratory patterns and dispersion ranges will be exacer-
bated with median temperature increases, possibly resulting 
in significantly more pest invasions and introductions. For 
example, in a recent analysis relating 1,300 invasive species 
with the main crops in different countries and international 
trade routes, sub-Saharan African countries were identified 
as the most vulnerable to invasive species (Paini et al., 2016). 
In addition, these countries generally have little or no diver-
sification of economic industries, and they are hence highly 
dependent on agriculture (Organisation for Economic Co-
operation and Development/United Nations, 2011). Climate 
change-associated changes in invasive species will therefore 
greatly affect them.

The introduction or spread of relatively few invasive 
species can have a devastating impact on important staple 
crops such as maize, and other high-value cash crops includ-
ing tomatoes, peas, and green beans (Pratt, Constantine, & 
Murphy,2017). This was highlighted in a recent study (Pratt 
et al., 2017) on the economic impact that new invasive pests 
would have on the mixed maize farming of smallholder farm-
ers in six eastern African countries (i.e., Ethiopia, Kenya, 
Malawi, Rwanda, Tanzania, and Uganda) (Table 1). These 
countries have large rural communities that are dependent 
on smallholder farming for their livelihoods. The costs as-
sociated with invasive species equated to 1.8%–2.2% of total 
agricultural GDP per annum for the eastern African region, 
yet whose GDP is significantly dependent on agriculture con-
tributing between 24.5% and 43% (FAO, 2017). These losses 
could be even higher in the long term, growing to $1.0–
1.2 billion per year over the coming decade. Such findings 
clearly highlight the urgent need for strategies for control and 
coordinated responses to the imminent threat at the regional, 
national, and international levels.

However predictive these models may be, the establish-
ment, spread, and biological success of invasive species will 
definitely be altered by climatic change (Ziska, Blumenthal, 
Runion, Hunt, & Diaz-Soltero, 2011). In fact, diseases have 
completely blinded the International research community on 
the emerging importance of insect pests in view of climate 
change. To date, only limited investigations have been con-
ducted in Africa. Also, little information is available con-
cerning the precautionary measures that should be taken in 
the event that future climate change causes an increased in-
cidence of insect invasion. Current literature largely focuses 
on how climate change will affect weather patterns—mostly 
rainfall and temperature, with little emphasis on how such 
changes could influence or promote insect invasion, or the 

resultant losses in crop productivity. Our aim in this review 
is therefore to summarize current knowledge on insect pests 
based largely on the historical record of insect species that 
are already invasive in Africa, and that greatly affect crop 
production in Africa, and unfortunately, entering Europe and 
Asia in the future. The invasiveness of existing insect pests 
might increase further due to climatic changes that provide a 
better habitat and environmental conditions for growth and 
reproduction. In addition to classical insect control strat-
egies, we discuss possible new strategies of insect control, 
highlighting biotechnological approaches that might limit or 
prevent climate change-induced insect invasions.

2 |  INVASIVE INSECT PESTS IN 
AFRICA

Invasive insect pests moving to new habitats in Africa will 
pose a major threat to crop production and food security (https 
://theco nvers ation.com/afric as-most-notor ious-insec ts-the-
bugs-that-hit-agric ulture-the-harde st-83107 ). Since insect 
pests are sensitive to climate change (Chakraborty & Newton, 
2011), invasive insects are likely to thrive in the more suitable 
climatic niches of the future causing greater harm, particu-
larly in the absence of natural enemies or any pre-emptive 
protective measures in these new habitats (Ziska et al., 2011).

Insects are “ectotherm” organisms that rely on heat sources 
in the environment to control metabolic rate (Heinrich, 
1993). Climate change-induced increases in the air or host 
plant temperatures in Africa will result in faster insect devel-
opment. In general, future temperature regimes will be more 
optimal for insect growth even without effects on food sup-
ply and will exacerbate proliferation and decrease the time 
to reproductive maturity. Moreover, insect mortality rates are 
likely to decrease and more offspring will be produced per 
unit of food intake (Mattson & Haack, 1987). Taken together, 
these factors will result in dramatic increases in insect growth 
and pest population size (Maffei, Mithofer, & Boland, 2007). 
Insect pests will be more prevalent earlier in the crop growing 
season due to higher temperatures or new habitats.

The ability to predict insect invasions into new habitats 
is extremely challenging, particularly in the absence of re-
cords concerning the invasion history of selected regions. 
Also, predicting the impact of an individual insect species 
on a new habitat is difficult because of spatial and temporal 
uncertainties. Insects can have a major impact in one loca-
tion but only a minor impact in another location. Such uncer-
tainties ultimately influence the assessment and predictions 
of the economic impact that might result from invasion. A 
further challenge is to acquire precise data on how higher 
temperatures or changes in rainfall patterns contribute to in-
sect invasion. The extent of insect invasion may also depend 
on the extent of cultivation of host crops in new locations. 

https://theconversation.com/africas-most-notorious-insects-the-bugs-that-hit-agriculture-the-hardest-83107
https://theconversation.com/africas-most-notorious-insects-the-bugs-that-hit-agriculture-the-hardest-83107
https://theconversation.com/africas-most-notorious-insects-the-bugs-that-hit-agriculture-the-hardest-83107
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Currently, several insect pests such as the legume pod borer 
are mainly endemic to Western Africa where it infects cow-
peas (Agunbiade et al., 2012). The pod borer is, however, 
able to attack common beans and soybeans and beans, and 
hence, it has the potential to become invasive in new areas 
because of increased legume cultivation as well as climate 
change. Predicted increases in land area dedicated to the pro-
duction of legumes particularly soybeans, in wider more fa-
vorable regions of sub-Saharan Africa, are needed to satisfy 
the demands of a rapidly growing population with sufficient 
cheap protein (Foyer et al., 2019).

2.1 | Russian wheat aphid (Diuraphis noxia)

One of the best-documented and studied examples of an in-
vasive pest species in Southern Africa is the Russian wheat 
aphid (RWA, Diuraphis noxia Kurdjumov) (Hemiptera: 
Aphididae). This phloem-feeding aphid is able to survive in a 
variety of habitats due to the ability to withstand a wide range 
of temperatures. The insect lives inside the rolled leaves of ce-
real crops and grasses all year-round (https ://anima ldive rsity.
org/accou nts/Diura phis_noxia/ ). RWA was first reported as 
an invasive species and a local insect pest in Southern Africa 
as early as 1978. This insect was predominant in the sum-
mer rainfall area of the eastern Free State province of South 
Africa, devastating wheat yields with reported losses up to 
90% (Fouche et al., 1984; Walters, 1984; Walters et al., 1980). 
Interestingly, this invasion coincided with prolonged periods 
of low rainfall and increased temperatures. These conditions 
are similar to those predicted to occur as a result of future 
climate change in Africa and they might therefore contribute 
to further invasiveness of the aphid (Figure 1). It was ini-
tially suggested that RWA serves as a virus vector because 
of the symptoms and responses observed after feeding. This 
typically includes leaf rolling, with white or yellow chlorotic 
longitudinal streaks on infested leaves. However, this could 
not be confirmed (Burger & Botha, 2018). Aphid-induced 
yield losses are mainly due to chlorosis and decreases in the 
content of photosynthetic pigments (Botha et al., 2006), lead-
ing to a lower photosynthetic capacity (Botha et al., 2011; 
Fouche et al., 1984) as well as a decrease in effective leaf 
area (Walters et al., 1980).

Concerted breeding efforts, to limit the spread of the 
aphid in South Africa, resulted in the development of 
RWA-resistant germplasm containing different sources of 
resistance (i.e., Dn1, Dn2, Dn5, Du Toit, 1989). All these 
resources originated from the Fertile Crescent region of 
Middle East where RWA is endemic to. In 1992, the first 
resistant cultivar, TugelaDN, was released (Van Niekerk, 
2001), and by 2006, another 27 cultivars conferring resis-
tance to RWA had been identified and released (Tolmay, 
Prinsloo, & Hatting, 2000). Biological control initiatives 

were also launched, but rendered little success, as intro-
duced predator numbers were either too low or failed to 
adapt to their new habitats (Hatting, Humber, Poprawski, & 
Miller, 1999; Hatting, Poprawski, & Miller, 2000; Hatting, 
Wraight, & Miller, 2004; Prinsloo, 1998, 2000; Prinsloo & 
du Plessis, 2000).

Despite the successful implementation of integrated 
pest management (IPM) strategies, which includes the 
planting of resistant varieties, biocontrol agents and insec-
ticide spraying, this IPM only lasted for about 14  years. 
By 2006, breakdown in resistance to RWA was reported in 
the Free State province of South Africa (i.e., SA2, Tolmay, 
Lindeque, & Prinsloo, 2007), with reports of two addi-
tional D. noxia biotypes (i.e., SA3 and SA4) soon to fol-
low (Jankielsohn, 2011, 2016). Biotypes are morphological 
similar aphid populations that differ in their virulence to 
their host. By 2006, the original SA1 biotype invaded the 
winter rainfall areas in the Western Cape province, previ-
ously RWA free, by crossing a natural ecological barrier 
(i.e., Great Karoo biome, arid region with limited vegeta-
tion) causing significant damage to wheat and barley yields 
in this region (Botha, 2013). This migration coincided 
with prolonged periods of lowered rainfall and increased 
temperature trends as forecasted by climatic models for 
Southern Africa (Figure 1).

In May 2016, this aphid was reported for the first time 
in Australia (Plant Health Australia, 2017; Yazdani et al., 
2017). This invasion was already predicted in 1990, when 
Hughes and Maywald (1990) using the CLIMEX model, 
identified regions with climates highly suitable for settle-
ment by the species. Following the early reports, wide-
spread sampling confirmed the migration of the species 
throughout the south-eastern regions, as well as into north-
ern Tasmania (Plant Health Australia, 2017; Yazdani et 
al., 2017) confirming the validity of the early predictions. 
More recently, a modified Hughes and Maywald (1990) 
CLIMEX model (Table S1) that include irrigation areas 
as favorable habitat was applied which expanded the pre-
viously identified favorable climatic regions in temperate 
and Mediterranean areas in Australia and Europe; and in 
more semi-arid areas in north-western China and Middle 
Eastern countries, but also revealed new areas, not previ-
ously reported climatically suitable for the establishment 
of D.  noxia, such as parts of France, the UK and New 
Zealand. (Figure S1).

The RWA was also introduced to Kenya in 1995, with 
two RWA biotypes (i.e., Njoro and Timau) present in the 
country (Ngenya, Malinga, Tabu, & Masinde, 2016). These 
RWA biotypes differ from the biotypes in South Africa and 
were found to be phylogenetically closest to the Middle East-
African RWA group, alongside biotypes RWA1 and RWA2 
occurring in the United States and Mexico (Liu et al., 2010). 
Comparable climatic conditions to those in the Southern 

https://animaldiversity.org/accounts/Diuraphis_noxia/
https://animaldiversity.org/accounts/Diuraphis_noxia/
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African wheat-producing regions promoted the settlement 
and proliferation of this aphid, with some regions being 
more suitable than others. In a study wherein Malinga et 
al. (2007) compared the RWA biotypes in Kenya, the bio-
types from Njoro were shown to be fitter (i.e., experienced 
higher survival, progeny and estimates of intrinsic rate of 
natural increase) than the Timau biotypes. RWA severely 
hampers wheat production (442,000 MT) in Kenya, to the ex-
tent that production does not meet annual domestic demand 
(1,750,000 MT) (Njuguna, Macharia Mwangi, Kamundia, 
Koros, & Ngotho, 2016). RWA thus causes yield losses of 
up to 95% when not controlled (Macharia, Gethi, Ngari, & 
Njuguna, 2012). As in many other wheat production areas, 
RWA is mainly controlled by insecticide spraying (Macharia 
et al., 2012), which not only poses a hazard to the environ-
ment, but is also costly, especially to rural smallholder farm-
ers. Hence, there is a need for alternative effective methods 
of control, particularly in the face of climate change, which is 
likely to spread this aphid into new habitats.

A key question concerns the cause of this breakdown in 
aphid resistance. The answer is a combination of factors, such 
as changing climatic conditions that favored the settlement 
of RWA in new areas that were previously RWA free and 
farmers relying on limited resistance varieties with a narrow 
genetic base that were planted on a wide scale, with no or 
limited refuge. Such practices were associated with heavy 
insecticide dependence. Moreover, new RWA introductions 
coincided with wheat grain imports. This practice led to ac-
cidental introductions of new insect pests, which rapidly be-
came invasive. This is a common phenomenon (Paini et al., 
2016). Wheat import data from 1988 to 2012 have been an-
alyzed (Burger, 2015). This study involved un-milled wheat, 
either as seed or fresh material, as well as countries with a 
record of RWA infection. Countries included in this investi-
gation were Argentina, Chile, Canada, Mexico, South Africa, 
and the United States. In these countries, RWA was either 
confirmed as an insect pest, or was believed to have acted as 
a corridor for introduction. Also included in this investiga-
tion were major trading partners to South Africa for wheat 
imports including the United States, Argentina, Canada, and 
Germany (Figure 2). By making use of online world trade 
databases, Burger (2015) thereby made the interesting obser-
vation that the reports of new RWA biotypes (i.e., SA2, SA3, 
and SA4) in South Africa followed major wheat imports from 
the United States (Figure 2). By also studying the genome of 
the RWA endosymbiont (B. aphidicola), Burger (2015) also 
reported sequence similarities with that of B. aphidicola from 
RWA biotypes US2, US5, and US8, providing evidence in 
support of the conclusion that the United States was the ori-
gin of South African RWA biotypes, SA3 and SA4.

The breakdown in resistance also led to a new wave of 
breeding efforts to identify alternative sources of RWA re-
sistance. Currently, RWA is controlled through integrated 

management practices, consisting of cultural practices, plant-
ing of resistance varieties, and frequent insecticide spraying. 
The latter strategy incurs the additional cost to South African 
wheat farmers on average by US$12 per hectare, increasing 
the annual financial burden of production costs to approx-
imately US$4 million to wheat farmers that already suffer 
from low profit margins (De Lange, 2017). In general, all 
these aspects have to be considered in future strategies to 
limit damage by this aphid in relation to climate change sce-
narios, when this aphid will possibly invade new climatically 
more favorable habitats. Therefore, future controls for the 
aphid must seek to prevent further extensive spread to new 
habitats and require much more effective strategies than are 
presently available.

2.2 | Fall armyworm (Spodoptera frugiperda)

The armyworm Spodoptera exempta is native to Africa 
(Haggis, 1986). A different armyworm species that is closely 
related to the native African armyworm is the fall armyworm 
(Spodoptera frugiperda). This species is endemic to North 
and South America and is a prime noctuid pest of maize. 
This maize herbivore was introduced into Africa in 2016. It 
is thought to be a haplotype from South Florida. The pres-
ence of this insect has been reported in over 30 African coun-
tries including Kenya (Sisay et al., 2018) and South Africa 
(Erasmus, 2017) (Figure 3). As the fall armyworm has a wide 
host range with almost 100 recorded plant species in 27 fami-
lies (Pogue, 2002), this accidental introduction in the African 
continent will constitute a lasting threat to several important 
crops. This is especially problematic within the African con-
text, because its preferred hosts are graminaceous plants, 
including economically important staples such as maize, 
sorghum, rice, wheat, sugar cane, and napier grass. Female 
moths normally lay up to 200 eggs at the base of the plant 
stalk, or protected in a leaf joint, and eggs hatch after 3 days 
making the dispersal capacity and the potential incurred dam-
age to crops due to feeding colossal as the worm eats the 
plant's reproductive parts and even eats through the maize 
cob itself (Prasanna, Huesing, Eddy, & Peschke, 2018).

Damage incurred by the fall armyworm on maize is esti-
mated to be in the range of USD$3 billion annually, based on 
data from Centre for Agriculture and Bioscience International 
(CABI) (April, 2017). This accounts for more than 20 percent 
of the total production for the region. Feeding damage, how-
ever, is not limited to these crops, but is also observed on 
other major cash crops such as cowpea, groundnut, potato, 
soybean, and cotton.

Control of the fall armyworm is not easy because of its 
broad distribution (Figure 3). Additionally, the insect only 
to emerge at night necessitates the use of systemic insecti-
cides. Even though maize cultivars expressing the Cry1F 
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toxin against insect defoliators are widely commercialized in 
the western hemisphere of South Africa, this is not the case 
for tropical Africa. The deployment of transgenic Bt maize 
and application of regular insecticide sprays is hampered by 
economic, logistic, and socio-cultural and religious consider-
ations. Bt maize has been genetically modified (GM) to pro-
duce Bt protein, an insecticide that kills certain insect pests. 
The gene has originally been isolated from a soil bacterium, 
Bacillus thuringiensis (Bt), which has long been known to 
possess an insecticide effect.

In general, most of sub-Saharan Africa lack the legal 
framework to commercialize GM crops. Moreover, where 
they have been approved as in Kenya, there exists a mor-
atorium against environmental release and trade of GM 
foods particularly maize. Notwithstanding, reports of fall 

armyworm resistance to Cry1F (Storer et al., 2010) increase 
the need to develop alternative control options such as endo-
phytic entomopathogenic fungi and insect biological control 
agents. Reports from studies in Ethiopia on Cotesia icipe, 
a dominant larval parasitoid, suggest that parasitism ranges 
from 33.8% to 45.3%. The tachinid fly, Palexorista zonata, 
resulted in 12.5% parasitism of plants in Kenya. However, 
the most common parasitoids in Kenya and Tanzania are 
Charops ater and Coccygidium luteum, with parasitism rang-
ing from 6% to 12%, and 4% to 8.3%, respectively (based on 
data from CABI, April 2017).

Various countries have reported crop damage by the fall 
armyworm that varies from minimal to substantial (Table 2). 
For example, Mozambique reported crop losses of up to 65% 
in some regions (African Centre for Biodiversity, 2018). In 

F I G U R E  2  Wheat imports to the 
Republic of South Africa from 1988 to 
2012. Reports of D. noxia biotypes that 
coincided with significant wheat imports 
indicated by arrows (Burger, 2015)

1990 1995 2005 2010

W
he

at
 im

po
rts

 (M
3 T

on
ne

s)

0

200 × 106

400 × 106

600 × 106

800 × 106

European Union 
France 
Australia 
Brazil 
Germany 
Argentina 
Canada 

2000

Year of  wheat importation

W
he

at
 im

po
rts

 (M
3 

To
nn

es
)

0

50 × 106

100 × 106

150 × 106

200 × 106

Ukraine 
Russian Federation 
Poland 
India 
United Kingdom 
Denmark 
Pakistan 
Turkey 
Belguim-Luxenbourg 
Saudi Arabia 
Romania 
Malawi 

W
he

at
 im

po
rts

 (M
3  T

on
ne

s)

0

200 × 106

400 × 106

600 × 106

800 × 106 USA 
SA3 

SA4 
SA2 



8 of 21 |   BOTHA eT Al.

addition, Uganda had an armyworm invasion in half of the 
country. Other African countries reported low, or even insig-
nificant, infestation (African Centre for Biodiversity, 2018). 
Without any control measures, the worm has the potential to 
cause yield losses in a range from 8.3 to 20.6 m tonnes per 
annum in 12 of Africa's maize-producing countries. This rep-
resents a range of 21%–53% of the annual maize production, 
averaged over a three-year period in these countries (Day et 
al., 2017; Wild, 2017).

The recent application of control measures, together with 
increased farmer awareness, and also improved rainfall has 
served to limit the damage caused by the armyworm. The pre-
ferred habitat for the fall armyworm is in regions with little 
forest cover, an average (500–700 mm) rainfall, with a min-
imum annual temperature of 18–26°C (Nagoshi, Meagher, 
& Hay-Roe, 2012). The worm cannot tolerate freezing 
temperatures. Species distribution modeling indicates that 
much of sub-Saharan Africa including Kenya  which has 

F I G U R E  3  (a) Fall armyworm larvae, 
and eggs (Spodoptera frugiperda), and its 
distribution across the Africa continent (a); 
(b) The African armyworm (S. exempta); 
(c) The lesser armyworm (adapted from 
FAO, 2018; Carzoli et al., 2018 https ://doi.
org/10.1016/j.gfs.2018.10.004S. exigua); 
(d) The cotton leaf worm (S. littoralis); (e) 
The False armyworm (Leucania loreyi); 
(f) The African boll worm (Helicoverpa 
armigera); and (g) The common cutworm 
(Agrotis segetum) (Photographs: Courtesy of 
Dr. Annemie Erasmus, ARCSummer Grain 
Crops, Potchefstroom, SA)

(a)

(b)

(e) (f) (g)

(c) (d)

https://doi.org/10.1016/j.gfs.2018.10.004S
https://doi.org/10.1016/j.gfs.2018.10.004S
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the pest all year-round (Sisay et al., 2018) and South Africa 
(Erasmus,  2017),  is highly suitable for this invasive insect 
pest. Modeling predicts the possible extinction of the army-
worm due to future wetter climatic conditions in areas near 
to the Equator (Ramirez-Cabarel, Kumar, & Shabani, 2017). 
However, a further spread of the worm to other regions may 
occur due to drier climatic conditions that creating a more 
suitable habitat for the pest (Figure 1) (Davies-Reddy & 
Vincent, 2017; Wild, 2017).

An important question concerns how future global warm-
ing may potentiate future invasions or depress the spread of 
the fall armyworm in Africa. In this regard, more research is 
required to increase the predicted periods of drought more 
accurately, and also the periods of high sporadic rainfall that 
may favor the spread of the insect. For example, the drought 
linked to the El Niño weather system of 2014–16, followed 
by the current high rainfall associated with the La Niña sys-
tem, created the “perfect conditions” for fall armyworm out-
breaks in Africa (Wild, 2017).

The fall armyworm, however, is not the only pest of maize 
that is likely to become more invasive in Africa. The spot-
ted stem borer, Chilo partellus, and the maize stem borer, 
Busseola fusca, which both feed inside the growing maize 
plants in lowland and highland regions of East Africa, respec-
tively, cause severe damage to crops. These two pests cause as 
much as $450 million in grain losses to smallholder farmers 
each year (CABI, April 2017). These two pests also have a 
wide distribution (Figure S2) attacking other important crops 
such as sorghum. However, the distribution of the two insect 
pests varies with altitude (Glatz, Plessis,& Van den Berg, J., 
2017; Khadioli et al., 2014); whereas B. fusca prefers moun-
tain sides, C. partellus prefer a low altitude. In the future, this 
spatial distribution may be altered due to climate change, with 
increasing temperatures and more frequent periods of drought 
and heavy rainfall. For example, an increase in atmospheric 
temperatures at high altitude could improve the assimilation 
of silicon by maize, which fends off B.  fusca and benefits 
C. partellus. This could lead to an extension of the distribu-
tion area of C. partellus, which could expand its range into 
higher altitude areas, highland tropics, and moist transitional 
regions, which have the highest maize agricultural potential 
and where the species has yet not been recorded. The spread 
of these and other insect pests has serious implication in terms 

of food security because these areas produce approximately 
80% of the total maize in East Africa (Calatayud et al., 2016).

2.3 | Leafminer (Tuta absoluta)

Climate change is likely to cause an increase in the range of 
the damaging leafminer species, particularly for Tuta absoluta. 
Modeling of CLIMEX data to predict future T. absoluta dis-
tribution patterns of Africa revealed that the pest could invade 
and become established in most areas of the African continent 
(Figure 4; Tonnang, Mohamed, Khamis, & Ekesi, 2015).

Introducing irrigation scenarios to optimize the CLIMEX 
model (Sutherts, Maywald, & Kriticos, 2007), Tonnang et al. 
(2015) were able to predict that T. absoluta not only presents 
an important threat to West Africa, but most tropical regions 
in Africa, as well as Asia, Australia, Northern Europe, New 
Zealand, Russian Federation, and the United States (USA). 
The model further suggests that the pest may upsurge mod-
erately in areas of Africa where the pest currently exists, or 
it may expand its range into other regions of tropical Africa 
with reasonable upsurge of damage potential. These possible 
outcomes could be explained by the fact that the continent is 
already warm, with the average temperature in the  majority 
of localities near the threshold temperatures for optimal de-
velopment and survival of T. absoluta. (Tonnang et al., 2015).

The rapid successful invasion is due to the intensive cul-
tivation and cross border trade of tomato fruits, the primary 
host of T. absoluta, but also the prevailing similar ecological 
and climatic conditions to those of South American countries, 
the native region of the pest (Tonnang et al., 2015). The insect 
has so far invaded Tunisia (Desneux et al., 2010), north of 
the Sahel (Desneux et al., 2010), western Africa, Sudan, and 
Ethiopia as well as Kenya (Pfeiffer et al., 2013). Collectively, 
this has already caused significant economic impact, with total 
annual losses up to $149.1 million for Liriomyza leaf-mining 
flies and estimated losses of up to $79.4 million for T. abso-
luta. However, these figures are likely to grow substantially 
with the rapid spread of the latter pest (CABI, April 2017). 
The reasons for this rapid spread are that horticultural crops 
are often grown along with staples, such as maize, where they 
are valuable nutritionally, and they also serve as cash crops 
for smallholder growers. In northern Africa, this pest causes 

T A B L E  2  Estimated yield and economic losses for maize and sorghum in Ghana and Kenya due to the fall armyworm (from Abrahams  
et al.,2017)

Crop Country
Total Production without fall 
armyworm (tons M)

Yield loss with fall army-
worm (tons M)

Estimated yield loss with 
fall armyworm (USD $M)

Maize Ghana 1.8 0.500 136.1

Kenya 3.5 0.900 328.1

Sorghum Ghana 0.3 0.004 17.7

Kenya 0.2 0.030 14.4
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80%–100% crop loss when proper management strategies are 
not implemented (Giulianotti & Certis, 2010).

3 |  DETERMINANTS OF 
INVASIVENESS

Invertebrates are especially sensitive to changing climatic 
conditions, and their response to temperature, rainfall, relative 
humidity, and soil moisture is important predictors of success-
ful colonization (Chen, Xia, Fu, Wu, & Xue, 2014; Klapwijk, 
Ayres, Battisti, & Larsson, 2012; Macfadyen, McDonnald, & 
Hill,2018). As more information becames available, climate 
models are becoming increasingly more valuable to assist 
in the prediction of habitat suitability for invasive species. 
Although these models prove valuable, the establishment of 
a suitable model is not a straightforward process (Newbery, 
Qi, & Fitt,2016; Macfadyen & Kriticos, 2012; Tonnang et al., 
2017; Ward & Masters, 2007) as several factors come into 
play during the development, selection/choice, and applica-
tion of these models. Also, the ability of the developed model 
to accurately predict future invasions is highly reliant on ac-
curate historical data and a good understanding of the fac-
tors that determine settlement of the targeted species. Many 
of these can be species specific, while other factors relate to 
the resource/niche availability (Ward & Masters, 2007; Wan 
and Yan, 2016). Hence, the strong notion toward making use 

of a whole system approach during the development of such 
a model as was recently reviewed (Tonnang et al., 2017).

Key factors determining the suitability of a new hab-
itat for  insects relate  to traits like host range, phenological 
plasticity, and lifecycle strategies (Ward & Masters, 2007). 
While some insects have narrow host ranges and therefore 
are specialist feeders, others have a broad host range includ-
ing many plant genera, hence generalists, making them likely 
more successful during their invasions of new habitats. An 
example of the latter, that are known for their successful colo-
nization of new habitats, are whiteflies (Bemisia tabaci) with 
a host range of more than 600 species (Wan and Yan, 2016 
and references within). Whiteflies are pests to crop plants on 
several continents, including Africa.

Climate change like increased temperature will result in 
accelerated development and increased voltinism for many 
pest species (Ziter, Robinson, & Newman, 2012) and may 
mean species become active earlier in the season (Harrington, 
Fleming, & Woiwod,2001; Macfadyen et al., 2018). Close 
synchrony of insects with their host plants to successfully 
complete their lifecycles is hampering invasion to new areas. 
Thus, phenotypically plastic invasive species that are not 
dependent on close phenological coupling with host plants 
(e.g., the highly variable egg load of the weevil, Rhinocyllus 
conicus on Cirsium canescens plants) increase their success-
ful settlement in a new habitat (Ward & Masters, 2007 and 
references within).

F I G U R E  4  (a) Potential range shifts in the distribution of Tuta absoluta in Africa using the eco-climatic indices EI under climate change 
scenario (a rise of 1.5°C Africa wide temperature and 10% increase of rainfall from March 2—September 30 and 10% decrease in the rest of the 
year). The map was produced from the difference between the values of EI of the predicted future T. absoluta distribution (obtained when applying 
climate change criteria) and the distribution of the pest originated from current climate (year 2000) in Africa. EI = 0 demonstrates no range shift; 
EI < 0 signifies a reduction of climatic suitability; and EI > 0 represents an increase in the likelihood of survival and permanent establishment 
of the species. (b) Potential range of increase in number of generations per year of T. absoluta under the selected climate change scenario (from 
Tonnang et al., 2015)

(a) (b)

0  250  500          1,000      1,500       2,000
km
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Another important factor determining the ability to in-
vade new habitats relates to reproduction. The top ten in-
vasive alien species, such as whiteflies (B.  tabaci) (Goa, 
Cong, & Wan, 2013) and vegetable leafminer (Liriomyza 
sativae) (Zhang, Yu, & Zhou, 2000), share the following 
traits; they all have high fecundity, short generation times, 
and produce multiple generations per year, ensuring long-
term persistence at low population density after initial intro-
duction. The ability to reproduce through parthenogenesis 
provides an advantage as they can exploit new resources 
without the hindrance of finding a mate and unpredicted 
Allee effects (Liebhold et al., 2016). A good example of 
the latter include Russian wheat aphid (Diuraphis noxia), 
known for its invasiveness worldwide (Burger & Botha, 
2018; Yazdani et al., 2017). Other traits of importance 
determining successful invasion include adaptability to 
changing climates (thermal tolerance—adaptation to low/
high temperatures), insecticide resistance, and immune 
priming (i.e., immune memory to previous pathogen expo-
sure; Wan and Yan, 2016 and references within).

4 |  ECOSYSTEM INVASIBILITY 
AND INTEGRATED PEST 
MANAGEMENT

Several theories about ecosystem invisibility exist, including 
crop system complexity, land use patterns, and geographic 
and climate barriers (Wan & Yang, 2016 and references 
within). Reduction of habitat heterogeneity and increased in 
mono-agricultural ecosystems due to farming (maize, wheat, 
and rice) provides suitable habitats for most invasive crop 
pests (Knops et al., 1999).

Commercial monoculture farming systems are highly de-
pendent on external inputs (synthetized fertilizers, chemical 
pesticides, and growth regulators) with simplified ecosys-
tems (Kremen, Iles, & Bacon, 2012; Malézieux, 2012). In 
contrast, agricultural systems that promote functional biodi-
versity and support ecological processes allow for benefits 
from many ecosystem services, such as nutrient cycling, soil 
structuration, and pest control (Afrin et al., 2017; Altieri & 
Rosset, 1996; Zhang, Werf, Zhang, Li, & Spiertz, 2007).

Disrupting monoculture agriculture systems through 
intercropping, using at least two crops species at the 
same time on the same land (Kahn, 2010; Konar, Singh, 
& Paul, 2010), enhances pest control (Baidoo, Mochiah, 
& Apusiga, 2012; Baliddawa, 1985; Rao, Manimanjari, et 
al., 2012a; Rao, Rama Rao, et al., 2012b; Sharaby, Abdel-
Rahman, & Sabry, 2015; Sulvai, Chaúque, & Macuvele, 
2016). Intercropping with several crop species assists in 
pest management because it is unlikely that different crops 
will be infested by the same pest species (Baidoo et al., 
2012).

Field studies have demonstrated that intercropping pro-
tects the target crop through several mechanisms, including 
the release of organic chemicals by non-host crops grown in 
intercropping which adversely affect the pest insects (Sulvai 
et al., 2016). The released organic chemicals may act as re-
pellents to insect pests, but also attracts biocontrol agents 
(natural enemies) of insect pests (Dassou & Tixier, 2016; 
Letourneau et al., 2011; Song et al., 2013). Mixed crop agri-
culture has also been shown to sometimes act as barriers that 
hinder movements of insect pests, providing some protection 
to susceptible plants (Parker, Rodriguez-Saona, Hamilton, & 
Snyder, 2013).

Intercropping is commonly used in small-scale farming 
systems for pest control as it diversifies crops in a given 
agro-ecosystem to reduce the population of insects and 
consequently their attack (Degri, Mailafiya, & Mshelia, 
2014; Pimental, Hepperly, Hanson, Douds, & Seidel, 2005; 
Vaiyapuri, Amanullah, Rajendran, & Sathyamoorthi, 2010). 
Studies in Kenya (Kinama, Habineza, & Jean Pierre, 2018 
and references therein) and Egypt (Abdel-Wahab, Abdel-
Wahab, & Abdel-Wahab, 2019) demonstrated that cereal–le-
gume intercropping has benefits beyond just pest and disease 
control, as they also measured increased yield, better biolog-
ical nitrogen fixation, and better weed control. Consequently, 
they reported significant economic benefits for these farmers.

5 |  BIOTECHNOLOGY, A TOOL 
TO LIMIT INVASIVE INSECT PEST 
DAMAGE

The initial commercialization of Bacillus thuringiensis (Bt) 
maize in 1996 was hailed as the ultimate solution for pest 
control and it was widely adopted. Since then, studies showed 
that the adoption of Bt maize and cotton has reduced the use 
of insecticides by 85%. The use of Bt crops also protected 
neighboring crops such as peppers and beans (Gitig, 2018).

Management of the fall armyworm, for example, already 
includes the application of GM plants expressing one or more 
insecticidal proteins derived from Bacillus thuringiensis (Bt) 
(Ingber, Mason, & Flexner, 2018) (Table 2). In sub-Saha-
ran Africa, the Bt technology has also been recommended 
to limit invasion of the fall armyworm (ISAAA, 2018). 
Although maize cultivars expressing the Bt Cry1F toxin are 
already worldwide applied for control of the fall armyworm, 
including South Africa, it is not widely used in other African 
countries with recent invasions. These countries are currently 
engaged in research and testing of GM crops to limit further 
spread of this pest (ISAAA, 2017).

Even though planting Bt maize would be useful in these 
countries and limit the spread of the fall armyworm, this tech-
nology is not a lasting solution because of the breakdown of 
resistance to Bt proteins, as has been observed in Cry1F and 
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Vip3AA20 (Haung et al., 2014). Resistance may also develop 
against Vip3AA20, the latest Bt toxin that is effective in the 
field. Such findings suggest that Vip3AA20 will not be effec-
tive for much longer. Therefore, more research is needed to 
determine which fall armyworm strains are already present in 
Africa, and whether these strains already carry the Bt resis-
tance alleles. This knowledge is essential if future Bt varieties 
are to remain effective in dealing with the insect pest.

Maize plants expressing the Bt toxin are also widely ap-
plied for control of the insect pests B. fusca and C. partellus 
(Mugo et al., 2011; Tefera et al., 2016). However, similar re-
sistance problems as found for the fall armyworm have been 
found when applying the Bt technology for the control of 
B. fusca. A shift in levels of susceptibility of B. fusca to Bt 
maize was specifically found with a very low larval survival 
on Bt-maize leaf tissue before the release of Bt maize many 
years ago to current much higher larval survival (Strydom, 
Erasmus, Plessis, & Berg, 2019). Such reports of Bt resis-
tance have already led to also consider alternative control 
options such as application of endophytic entomopathogenic 
fungi and application of exotic parasitoids like Cotesia flavi-
pes, already released in 1993 in Kenya, for biological control 
of the introduced stemborer Chilo partellus (Overholt et al., 
1994).

In addition to protecting maize, the Bt technology has also 
been applied to the control of the tomato leafminer (Tuta ab-
soluta). When the cry1Ac gene was introduced into tomato 
plants, Bt-expressing tomato lines were better protected 
against the leafminer (Selale, Dağlı, Mutlu, Doğanlar, & 
Frary, 2017). The recently introduced South American tomato 
leafminer (also known as the South American pinworm), Tuta 
absoluta, and three species of Liriomyza leaf-mining flies 
are the most important and most widely distributed pests on 
horticultural crops in Africa. Current control measures rely 
mostly on chemical spraying, although implementation and 
pest management practices such as surveillance and the intro-
duction of appropriate phytosanitary activities to manage the 
spread of T. absoluta in Africa have also been widely imple-
mented (Tonnang et al., 2015).

Although the Bt technology offers advantages as a mea-
sure to limit future invasion by insect pests, the deployment 
of transgenic Bt maize and application of regular insecticide 
is hampered in Africa by the GMO resistance problem and by 
economic, logistic, and socio-cultural and religious consider-
ations. Not only is the cost of Bt-maize seed an additional bur-
den, as smallholder farmers rarely have the financial means to 
annually purchase expensive seed (Fischer, Van den, Berg, & 
Mutengwa, 2015), but most of sub-Saharan Africa still lacks 
the legal framework to commercialize GMO crops. Where 
GMO crops have been approved, as in Kenya, a moratorium 
against the environmental release and trade of GMO foods, 
particularly maize, still exists. These problems have impeded 
the utilization of GM crops in Africa, for example during the 

2002 food crisis when Malawi, Mozambique, Zambia, and 
Zimbabwe initially refused US food aid shipments despite 
widespread food shortages (Zerbe, 2004). The concerns of 
these countries are based on the  percieved potential health 
impact of GM foods on recipients, the impact of GM food on 
domestic agricultural biodiversity and impact of GM food on 
their ability to export agricultural commodities in the future 
(Zerbe, 2004).

Additional factors contributing to the poor implementa-
tion of GMO varieties into smallholder agriculture include 
(a) a lack of education and technology transfer, (b) conflicts 
of interest (commercial investment) (Fischer et al., 2015), 
and (c) the lack of political will and good governance (Zerbe, 
2004). It is important to note that most African countries are 
aligned to their former colonial “masters.” These are mainly 
European, whose philosophy still plays a leading role in mat-
ters of education, science, technology, and trade. It is there-
fore not surprising that most African countries have adopted 
the precautionary approach to GMOs that is similar to that of 
the European Union (Elliot & Madan, 2016). GM crops face 
strong opposition in most countries of the European Union 
and Japan (Smyth, 2017). Heated debates still continue in 
Africa, regarding whether GM crops will help alleviate food 
insecurity or whether the adoption of this technology could 
result in negative impacts (Falck-Zepeda, Gruere, & Sithole-
Niag,2012). Consequently, African policymakers are hes-
itant to move forward with establishing biosafety laws and 
commercializing GM crops, largely due to risk perceptions 
and fears spread by anti-biotech lobbying groups (Paarlberg, 
2010).

Poor transfer of information on Bt maize (genetically 
modified, GM) underpins the lack of the successful adoption 
of the GM maize by smallholders in many Southern African 
countries. One should have in mind that, although risks as-
sociated with GM crops are very likely low or non-existent, 
adoption of a GM technology will not succeed if simply im-
posed on a farmer (Carzoli et al., 2018). Education on the 
benefits (such as it provides resistance to stem borers) and 
prevention of resistance breakdown (i.e., refuge practice—
need to plant a refuge crop of non-Bt maize next to Bt crop) is 
required to successfully adopt Bt maize. Smallholder farmers 
must also be better informed that the crop protection only 
lasts while hybrid seed is being planted. In this regard, as seed 
is mostly distributed by commercial seed companies, govern-
mental regulations for the distribution of Bt maize obstruct 
smallholders from fully benefitting. Education and training 
on proper insect resistance management following approval 
of GM maize crops; especially training on proper implemen-
tation of refuge is a further a problem for better adoption 
of the Bt technology (FAO, 2018; Fatoretto, Michel, Silva 
Filho, & Silva, 2017). The reality of a refuge crop  means 
that fall armyworm will destroy the maize in this portion of 
the field, equaling little or no harvestable yield. However, 
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implementing and monitoring non-Bt refuges will likely be 
a challenge in the smallholder farm context as already found 
in India and China (Tabashnik et al., 2013). Mixing non-Bt 
seeds into Bt seed bags (“refuge in a bag”) may be therefore 
a more suitable option, at least when seeds are purchased in 
the formal seed market.

As Bt insecticides and Bt transgenic crops have been 
widely used internationally for pest control (Bravo, 
Likitvivatanavong, Gill, & Soberón, 2011), more reports 
on the development of resistance to Bt toxins are surfacing 
(Elliot & Madan, 2016). Hence, the need to seek alternatives 
is becoming more urgent. If the transfer of BT transgenic 
crops is not accompanied by effective regulatory require-
ments, then efficacy may be decreased. For example, in the 
United States, BT crops were introduced with surrounding 
non-GMO Crop refugia as a regulatory requirement to trap 
insects. Even with this measure in place, Bt breakdown lead-
ing to crop susceptibility has occurred. While such regulatory 
requirements are good practice, they will need to be mod-
ified for implementation by small-scale holders in Africa, 
who mostly lack the land to practice such measures on a 
large scale. Unfortunately, they are often supported by weak, 
poorly motivated extension services.

Furthermore, any predicted consequences of climate 
change in these countries, such as more intense drought 
conditions, might possibly severely affect the efficacy of 
the Bt toxin for insect control (Martins et al., 2008). The 
problems Bt technology currently faces in Africa raises the 
question whether new gene silencing technologies, such 
as RNA interference (RNAi) and CRISPR/Cas9, should 
be developed as alternatives or additions to limit a possi-
ble future spread of invasive insect pests. Also, will these 
technologies be feasible and acceptable technologies to 
strengthen particularly food security for poor African farm-
ing communities?

Without doubt, RNAi technology with small interfering 
or silencing RNA (siRNA), when expressed in a plant to tar-
get an insect gene, could be useful to specifically protect a 
crop against invasive insect pests. Usually an instantaneous 
process, unless the dsRNA is supplied continuously, appli-
cation of the CRISPR/Cas9 technology generates changes at 
the genomic level that are stable and heritable, and the mu-
tant gene can be transmitted to the next generation (Perkins 
et al., 2016). This would clearly have benefits in providing 
more sustainable pest resistance as targets are specific and, 
in most, examples either developmental or structural in na-
ture (Sun, Guo, Liu, & Zhang, 2017 and references therein; 
Botha, Swiegers, & Burger, 2018). Despite the promise this 
technology offers, only a limited number of pests that dam-
age food crops have so far been targeted. Examples include 
H. armigera (Chang et al., 2017; Sun et al., 2017; Wang et al., 
2016 and references therein), Diuraphis noxia in our group 
(Botha et al., 2018), Spodoptera litura, Spodoptera littoralis, 

and Plutella xylostella, however  all of these are still in the 
experimental phase (Table 3).

Using CRISPR/Cas9, Wang et al. (2016) provided direct 
evidence that HaCad is a key receptor for Cry1Ac and is re-
lated to Cry1Ac resistance, opening up new avenues to pro-
long the use of Bt toxins. CRISPR/Cas9 was also used in a 
new pest control strategy with H.  armigera to destroy pest 
mating through antagonist-mediated optimization of mating 
time that ensures maximum fecundity (Chang et al., 2017). 
In D.  noxia, a significant reduction (±50%) in intrinsic re-
production rate (as measured in nymph production) has been 
measured targeting Dncprr1-8, a gene containing a conserved 
R&R region (Rebers and Riddiford Consensus) (Rebers & 
Willis, 2001) and an important cuticular protein (Botha et al., 
2018). The same gene is now tested for its potential use to 
protect leafy crops against other phloem-feeding hemipterans.

Studies have demonstrated that climate change will 
greatly influence the interactions between plants, phlo-
em-feeding pests like aphids and whiteflies (the latter al-
ready a significant problem in Africa), and their natural 
enemies. Since whiteflies also differ in their adaptability, 
better adapted species will likely experience increased dis-
tribution and abundance provided their tolerance limits are 
not exceeded, while species with lower tolerance and ad-
aptation limits will suffer reduced fitness, which will have 
overall effects on their distribution and abundance in space 
and time. Changes in climatic suitability modifying the dis-
tribution and abundance of whiteflies, and environmental 
suitability for plant viruses, will likely also affect epidem-
ics of viral diseases (Aregbesola, Legg, Sigsgaard, Lund, & 
Rapisarda, 2019). However, when RNAi technology will be 
regarded as a technology to limit whitefly spread, it would 
be essential to express such siRNA/dsRNA in the phloem 
under a tissue-specific promoter to target these phloem-feed-
ing insects. RNA interference (RNAi)-mediated gene si-
lencing has been indeed explored with some success for the 
control of the sap-sucking whitefly, a major pest in Africa. 
In addition to cereals, the whitefly causes damage to root 
and tuber crops, including cassava and sweet potato, and 
transmits hundreds of plant viruses including the Cassava 
Mosaic and Cassava Brown Streak viruses (Mugerwa et al., 
2018). Knockdown of whitefly genes involved in neuronal 
transmission and transcriptional activation of developmen-
tal genes reduced the whitefly population size and also de-
creased any virus spread (Malik et al., 2016).

6 |  IMPORTANCE OF 
COMMUNICATION

By 2017, about 17  million farmers across 24 countries 
planted biotechnology-derived crops across 189.8  million 
hectares (ISAAA, 2017), signifying the importance and 
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impact that biotechnology hasc  had on global agriculture. 
However, planting these crops also sparked debate on di-
verse issues that range from scientific, political, economic, 
ethical, and cultural viewpoints. Also, to ensure an enabling 
environment where farmers gain the full benefit these crops 
offer, a scientific-balanced (i.e., evidence based information 
on advantages/disadvantages/possible risks) view should be 
communicated effectively to increase public understanding 
(Traynor, Adonis, & Gil, 2007). Navarro and Hautea (2011) 
provided additional reasons for proper communication to 
the public, which include the benefits of having an informed 
public, improved policy, and better regulatory decisions, as 
well as increased public confidence.

Communication, however, is not only important for public 
acceptance of biotechnology crops, but also for maintaining 
effective networks wherein new pest invasions can be re-
ported, as well as to convey the benefits of planting refuges 
for the sustainability of the resistance in these crops. The 
Southern African Development Community (SADC) Multi-
Country Agricultural Productivity Programme (MAPP) is 
an example of such network in Africa (https ://www.sadc.int/
theme s/agric ulture-food-secur ity/). SADC is a collective of 
16 African countries, with the objective to increase agricul-
tural productivity by at least 6% per year. The SADC-MAPP 
focuses on agricultural research and seeks to strengthen tech-
nology development, technology dissemination, and linkages 
among agricultural institutions in the SADC region, includ-
ing communication of new pests and diseases that pose risks 
to food security in the region.

Minimizing the risk of invasions is an important aspect of 
integrated pest management and ensuring food security. The 
risk of new pest invasions can be minimized through policies 
(i.e., National and Regional Guidelines), monitoring technol-
ogy (i.e., DNA bar coding, etc.), databases, and early-warning 
systems (e.g., CABI’s Horizon Scanning Tool, CABI, 2018, 
https ://www.scidev.net/sub-sahar an-afric a/agric ultur e/opini 
on/insect-pests-invas ions-in-africa.html), as well as a collec-
tive eradication and spread blocking (Wan & Yang, 2016).

7 |  CONCLUSION

The continent of Africa has been identified to be extremely 
vulnerable to the negative impacts of climate change. Climate 
change models forecast global warming, with associated 
changes in rainfall patterns and increases in heatwaves. These 
factors alone are predicted to have a negative impact on the 
yields of most major crops, such as wheat, rice, and maize 
(Deutsch et al., 2018). This effect may in many cases be ex-
acerbated by insect pests that already consume between 5% 
and 20% of major grain crops. Studies concerning the effects 
of temperature on the population growth and metabolic rates 
of insects suggest that future yield losses caused by insects 

will increase by 10%–25% per degree increase in temperature 
(Deutsch et al., 2018). Such predictions provide a benchmark 
for future regional and Africa-specific studies on the effect of 
climate change on crop/insect interactions.

New invasive pests and changes in pest migratory patterns 
are but a few of the upcoming challenges to African agricul-
ture that collectively add additional burdens to resource-poor 
farming communities. Key questions concern how further in-
vasions of insect pests can be prevented or contained, partic-
ularly when caused by a changing climate. Controlling pests, 
such as the fall armyworm will certainly be challenging be-
cause of the significant ability of the insect to adapt to a broad 
range of habitats. For example, addressing the feeding habit 
of the caterpillar within the leaf whorl during the day and 
emergence only at night requires the application of systemic 
insecticides. Smallholder farmers would have to spray insec-
ticides like pyrethrins and organophosphates. Since the army-
worm has already developed resistance to these insecticides, 
it is particularly difficult to control the insect at an advanced 
larval developmental stage. Thus, alternative control methods 
are essential which may include physically picking the cater-
pillars off the plants, intercropping with plants not in favor to 
the insect, application of bio-pesticides, planting early in the 
season before any insect pest populations can build up or ap-
plying genetically modified plants such as plants engineered 
with the Bt toxin (Niassy & Subramanian, 2018; Yu, 1991). It 
is thus imperative that key pests and the crops that are suscep-
tible to attack are identified, in order to support prioritized 
decision-making and support tools, for example policies and 
sanitary measures, to control the introduction and spread of 
new pests. It may also assist researchers, governments, and 
developmental agencies to prioritize their focus areas for re-
search investment and action which may assist in enhanced 
food security for Africans.
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