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The UN Paris Agreement1 includes an aim of pursuing efforts to limit global warming to only 1.5°C 39 
above pre-industrial levels. Would such efforts limit climate risks evenly? Here we show that 40 
trajectories to “1.5°C warmer worlds” may result in vastly different outcomes at regional scales, 41 
due to variations in the pace and location of climate change and their interactions with society’s 42 
mitigation, adaptation, and vulnerabilities to climate change. Pursuing policies considered 43 
consistent with 1.5°C will not completely remove the risk of global temperatures being much 44 
higher or regional extremes reaching dangerous levels for ecosystems and society over the coming 45 
decades. 46 

 47 

Since 2010, international climate policy under the United Nations moved the public discourse from a 48 
focus on atmospheric concentrations of greenhouse gases to a focus on distinct global temperature 49 
targets above the pre-industrial period1,2. In 2015, this led to the inclusion of a long-term 50 
temperature goal in the Paris Agreement that makes reference to two levels of global mean 51 
temperature increase: 1.5°C and 2°C. The former is set as an ideal aim (“pursuing efforts to limit the 52 
temperature increase to 1.5°C”) and the latter is set as an upper bound (“well below 2°C”)1. This 53 
change in emphasis allows a better link between mitigation targets and the required level of 54 
adaptation ambition3,4.  55 
 56 
Assessing the effects of the reduction of anthropogenic forcing through a single qualifier, namely 57 
global mean temperature change compared with the pre-industrial climate, however, also entails 58 
risks. This deceivingly simple characterization may lead to an oversimplified perception of human-59 
induced climate change and of the potential pathways to limit impacts of greenhouse gas forcing. 60 
We highlight here the multiple ways in which a 1.5°C global warming may be realized. These 61 
alternative “1.5°C warmer worlds” are related to a) the temporal and regional dimension of 1.5°C 62 
pathways, b) model-based spread in regional climate responses, c) climate noise, d) and ranges of 63 
possible options for mitigation and adaptation. We also highlight potential high-risk temperature 64 
outcomes of mitigation pathways currently considered consistent with 1.5°C due to uncertainties in 65 
relating greenhouse gas emissions to subsequent global warming, and to uncertainties in relating 66 
global warming to associated regional climate changes. 67 
 68 
Definition of a “1.5°C warming” 69 

Global mean temperature is a construct: It is the globally averaged temperature of the Earth that 70 
can be derived from point-scale ground observations or computed in climate models. Global mean 71 
temperature is defined over a given time frame (e.g. averaged over a month, a year, or multiple 72 
decades). As a result of climate variability, which is due to internal variations of the climate system 73 
and temporary naturally-induced forcings (e.g. from volcanic eruptions), a climate-based global 74 
mean temperature typically needs to be defined over several decades (at least 30 years under the 75 
definition of the World Meteorological Organization)5. Hence, to determine a 1.5°C global 76 
temperature warming, one needs to agree on a reference period (assumed here to be 1850-1900 77 
inclusive, unless otherwise indicated), and on a time frame over which a 1.5°C mean global warming 78 
is observed (assumed here to be of the order of one to several decades). Comparisons of global 79 
mean temperatures from models and observations are also not straightforward: Not all points over 80 
the Earth’s surface are continuously observed, leading to methodological choices about how to deal 81 
with data gaps6 and the mixture of air temperature over land and water temperatures over oceans7 82 
when comparing full-field climate models with observational products.  83 
 84 

Temporal and spatial dimensions 85 



There are two important temporal dimensions of 1.5°C warmer worlds: a) the time period over 86 
which the 1.5°C warmer climate is assessed; and b) the pathway followed prior to reaching this 87 
temperature level, in particular whether global mean temperature returns to the 1.5°C level after 88 
previously exceeding it for some time (also referred to as “overshooting”, Figure 1a). As highlighted 89 
hereafter, for some components of the coupled Human-Earth system, there are substantial 90 
differences in risks between 1.5°C of warming in the year 2040, 1.5°C of warming in 2100 either with 91 
or without earlier overshooting, and 1.5°C warming after several millennia at this warming level. 92 

The time period over which 1.5°C warming is reached is relevant because some slow-varying 93 
elements of the climate system respond with a delay to radiative forcing, and the resulting 94 
temperature anomalies. Hence their status will change over time, even if the warming is stabilized at 95 
1.5°C over several decades, centuries, or millennia. This is the case with the melting of glaciers, ice 96 
caps and ice sheets and their contribution to future sea level rise, as well as the warming and 97 
expansion of the oceans, so that a substantial component of contemporary sea-level rise is a 98 
response to past warming. In addition, the rate of warming is also an important element of imposed 99 
stress for resulting risks, because it may affect adaptation or lack thereof8,9,10. For example, the 100 
faster the rate of change the fewer taxa (and hence ecosystems) can disperse naturally to track their 101 
climate envelope across the Earth’s surface8,11. Similarly, in human systems, faster rates of change in 102 
climate variables such as sea level rise present increasing challenges to adaptation to the point 103 
where attempts may be increasingly overwhelmed.  104 

Whether mean global temperature temporarily overshoots the 1.5°C limit is another important 105 
consideration. All currently available mitigation pathways projecting less than 1.5°C global warming 106 
by 2100 include some probability of overshooting this temperature, with some time period during 107 
the 21st century in which warming higher than 1.5°C is projected with greater than 50% 108 
probability12,13,14,15. This is inherent to the difficulty of limiting warming to 1.5°C given that the Earth 109 
at present is already very close to this warming level (ca. 1°C warming for the current time frame 110 
relative to 1851-190016). The implications of overshooting are very important for projecting future 111 
risks and for considering potentially long-lasting and irreversible impacts in the time frame of the 112 
current century and beyond, for instance associated with ice melting17 and resulting sea level rise, 113 
loss of ecosystem functionality and increased risks of species extinction11, or loss of livelihoods, 114 
identity, and sense of place and belonging18. Overshooting might cause the temporary exceedance 115 
of some thresholds for example in ecosystems, which might be sufficient to cause permanent loss of 116 
these systems; or, those systems and species able to adapt rapidly enough to cope with a particular 117 
rate of change would be faced with the challenge of adapting again to a lower level of warming post-118 
overshoot. The chronology of emission pathways and their implied warming is also important for the 119 
more slowly evolving parts of the Earth system, such as those associated with sea level rise (see 120 
above).   121 

On the other hand, to minimize the duration and magnitude of the exceedance above a 1.5°C level 122 
of warming (overshooting), the remaining carbon budget available for emissions is very small, 123 
implying that deeper global mitigation efforts are required immediately (next section; see also Table 124 
1 and Box 1).  125 

The spatial dimension of 1.5°C warmer worlds is also important. Two worlds with similar global 126 
mean temperature anomalies may be associated with very different risks depending on how the 127 
associated regional temperature anomalies are distributed (Fig. 1b). Differential geographical 128 
responses in temperature are induced by: a) spatially varying radiative forcing (e.g. associated with 129 
land use19,20,21 or aerosols22; b) differential regional feedbacks to the applied radiative forcing (e.g. 130 
associated with soil moisture-, snow, or ice feedbacks4,23); and/or c) regional climate noise24 (e.g. 131 



associated with modes of variability or atmospheric weather variability). Similar considerations apply 132 
to regional changes in precipitation means and extremes, which are not globally homogeneous3,4.   133 
These regional temperature and precipitation anomalies and their rates of change determine the 134 
regional risks to human and natural systems and the challenges to adaptation which they face. 135 

We note that mitigation, adaptation, and development pathways may result in spatially varying 136 
radiative forcing. While greenhouse gases are well mixed, changes in land use or air pollution may 137 
strongly affect regional climate. Land-use changes can be associated, for example, with the 138 
implementation of increased bioenergy plantations25, afforestation, reforestation, or deforestation, 139 
and their resulting impacts on local albedo or evapotranspiration; levels of aerosol concentrations 140 
may vary as a result of decreased air pollution22. Considering these regional forcings is essential 141 
when evaluating regional impacts, although there is still little available literature for 1.5°C warmer 142 
worlds, or low-emissions scenarios in general22,26,27,28. The spatial dimension of regional climates 143 
associated with a global warming of 1.5°C is also crucial when assessing risks associated with 144 
proposed climate engineering schemes based on solar radiation management (see hereafter). Beside 145 
the geographical distribution of changes in climate, non-temperature related changes are important, 146 
particularly where atmospheric CO2 has additional and serious impacts through phenomena such as 147 
ocean acidification. 148 

 149 

Uncertainties of emissions pathways  150 

Emissions pathways that are currently considered to be compatible with limiting global warming to 151 
1.5°C12,13,14,15 are selected based on their probability of limiting warming to below 1.5°C by 2100 152 
given current knowledge of how the climate system is likely to respond. Typically, this probability is 153 
set at 50% or 66% (i.e. 1/2 or 2/3 chances, respectively, of limiting warming in 2100 to 1.5°C or 154 
lower). The adequacy of these levels of probability is rather a political than a scientific question. This 155 
implies that even when diligently following such 1.5°C pathways from today onwards, there is 156 
considerable probability that the 1.5°C limit will be exceeded. This also includes some possibilities of 157 
warming being substantially higher than 1.5°C (see hereafter for the 10% worst-case scenarios). 158 
These risks of alternative climate outcomes are not negligible and need to be factored into the 159 
decision-making process.  160 

Table 1 provides an overview of the outcomes of emissions pathways that are currently considered 161 
1.5°C- and 2°C-compatible with a specific probability15 (and broadly consistent with the literature 162 
assessed in the IPCC AR512,14, see Box 1 and Supplementary Information). Both “probable” (66th 163 
percentile, which remains below the respective temperature targets) and “worst-case” (10% worst, 164 
i.e. high-end) outcomes of these pathways are presented, including resulting global temperatures 165 
and regional climate changes (see next section and Box 1 for details, and Supplementary Information 166 
for median outcomes). The reported net cumulative CO2 emissions characteristics for these scenario 167 
categories include effects of carbon dioxide removal options (CDR, also termed “negative 168 
emissions”29), which explains the decrease in cumulative CO2 budgets after peak warming. Possible 169 
proposed CDR approaches include bioenergy use with carbon capture and storage (BECCS) or 170 
afforestation and changes in agricultural practice increasing carbon sequestration on land29. We note 171 
that the use of these approaches is controversial and could entail own sets of risks, for instance 172 
related to competition for land use30,31. Their implementation is at present also still very limited, and 173 
the feasibility of their deployment as simulated in low-emissions scenarios has been questioned32. 174 
Current publications12,14,15 indicate that scenarios in line with limiting year-2100 warming to below 175 
1.5°C require strong and immediate mitigation measures and would require some degree and some 176 



kind of CDR. Alternative scenario configurations can be considered to limit the amount of CDR32,33. 177 
The current scenarios15 as well as recent publications34,35,36 provide updated cumulative CO2 budgets 178 
estimates, which have larger remaining budgets compared to earlier estimates12,14. These, however, 179 
do not fundamentally change the need for strong near-term mitigation measures and technologies 180 
capable of enabling net-zero global CO2 emissions near to mid-century if the considered emissions 181 
pathways are to be followed. 182 

 183 

Global and regional climate responses  184 

Considering a subset of regions and extremes shown to retain particularly strong changes under a 185 
global warming of 1.5°C or 2°C4,37, Table 1 provides corresponding regional responses for the 186 
evaluated 1.5°C- and 2°C-compatible emissions pathways. The Figures 2 and 3 display associated 187 
regional changes for a subset of considered extremes: temperature extremes (coldest nights in the 188 
Arctic, warmest days in the contiguous United States) and in heavy precipitation (consecutive 5-day 189 
maximum precipitation in Southern Asia). Changes in hot extremes in Central Brazil and in drought 190 
occurrence in the Mediterranean region are additionally provided in Table 1. We note that the 191 
spread displayed for single scenario subsets in Figures 2 and 3 correspond to the spread of the global 192 
climate simulations of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) 193 
underlying the derivation of the regional extremes for given global temperature levels4,37 (see Box 1 194 
for details). 195 

In terms of the resulting global mean temperature increase, Figure 2 shows that the difference 196 
between the 10% “worst-case” and the “probable” (66%) outcome of the scenarios is substantial, 197 
both for the 1.5°C and 2°C scenarios. Interestingly, the “worst-case” outcomes from the 1.5°C 198 
scenarios are similar to the probable outcome of the 2°C scenarios. Indeed, both of these show less 199 
than 2°C warming by 2100, and approximately 2°C in the overshoot phase, while the warming in the 200 
overshoot phase can be slightly higher for the “worst-case” 1.5°C than for the probable 2°C 201 
scenarios assessed here. Hence, the scenarios aiming at limiting global warming to 1.5°C also have a 202 
clear relevance for limiting global warming to 2°C13, in that they ensure that the 2°C threshold is not 203 
exceeded at the end of the 21st century. This contrasts with pathways designed to keep warming to 204 
2°C, but have a 10% high-end (“worst-case”) warming of more than 2.4°C. This result is important 205 
when considering a 2°C warming as a “defence line” that should not be exceeded2. 206 

Assessing changes in regional extremes illustrate the importance of considering the geographical 207 
distribution of climate change in addition to the global mean warming. Indeed, the average global 208 
warming does not convey the level of regional variability in climate responses4. By definition, 209 
because the global mean temperature is an average in time and space, there will be locations and 210 
time periods in which 1.5°C warming is exceeded even if the global mean temperature rise is 211 
restrained to 1.5°C. This is even already the case today, at about 1°C of global warming compared to 212 
the preindustrial period16. Similarly, some locations and time frames will display less warming than 213 
the global mean. 214 

Extremes at regional scales can warm much more strongly than the global mean. For example, in 215 
scenarios compatible with 1.5°C global warming, minimum night-time temperatures (TNn) in the 216 
Arctic can increase by more than 7°C at peak warming if the “probable” (66th percentile) outcome of 217 
scenarios materializes, and more than 8°C if the “worst-case” (highest 10%, i.e. 90th percentile) 218 
outcome of the scenarios materializes (Fig. 2). For the “worst-case” outcome of scenarios considered 219 
2°C compatible, the changes in these cold extremes is even larger, and can reach more than 9°C at 220 



peak warming (Fig. 2). While the change is more limited for hot extremes (annual maximum mid-day 221 
temperature, TXx) in the contiguous United States, it is also substantial there. At peak warming, 222 
these hot extremes can increase by more than 4°C for the probable 1.5°C scenarios (maximum in 223 
66% of the cases), and can reach up to 5°C warming for the “worst-case” 1.5°C scenarios and slightly 224 
less for the highest “probable” 2°C scenarios. If the 10% “worst-case” temperature outcome 225 
materializes after following a pathway considered 2°C-compatible today, the temperature increase 226 
of the hottest days (TXx) can exceed 5°C at peak global warming in that region (Fig. 2).  227 

These analyses also reveal the level of inter-model range in regional responses, when comparing the 228 
full spread of the CMIP5 distributions (Fig. 2). This interquartile range reaches about 2°C for TNn in 229 
the Arctic and 1°C for TXx in the contiguous US at peak warming, i.e. it is 2-4 times larger than the 230 
difference in global warming at 1.5°C vs 2°C. The intermodel range is also very large for changes in 231 
heavy precipitation in Southern Asia (Fig. 2), with an approximate doubling of the response at peak 232 
warming for the 75th quantile in the most sensitive models compared to the 25th quantile in the least 233 
sensitive models. This highlights that uncertainty in regional climate sensitivity to given global 234 
warming levels is an important component of uncertainty in impact projections in low-emissions 235 
scenarios (similarly as uncertainty in mitigation pathways or the global transient climate response). 236 
Indeed, in cases showing a high regional climate sensitivity (either due to model specificities or 237 
internal climate variability), the tail values of the climate model distributions for “probable” 1.5°C-238 
scenario outcomes overlap or even exceed likely values for the worst-case 2°C-scenario outcome 239 
(Fig. 2). This thus shows that even under most stringent mitigation (1.5°C) pathways, some risk of 240 
dangerous changes in regional extremes (i.e. equivalent or stronger than expected responses at 2°C 241 
global warming) cannot be excluded. 242 

Whilst most climate change risk assessments factor in the inter-model range of regional climate 243 
responses, relatively few consider the effects of extreme weather, for example the temperature 244 
increase of hottest days (TXx). Emerging literature highlights how these extreme events strongly 245 
influence levels of risk to human and natural systems, including crop yields38 and biodiversity39, 246 
suggesting that the majority of risk assessments based on mean regional climate changes alone are 247 
conservative in that they do not incorporate the effects of extreme weather events. In addition, the 248 
co-occurrence of extreme events is also of high relevance for accurately assessing changes in risk, 249 
although analyses in this area are still lacking40,41. 250 

Hence, the regional analyses of changes in extremes for scenarios aiming at limiting warming to 251 
1.5°C and 2°C highlight the following main findings: 252 

- Some regional responses of temperature extremes will be much larger than the changes in 253 
global mean temperature, with a factor of up to 3 (TNn in the Arctic). 254 

- The regional responses at peak warming for scenarios that are considered today as 255 
compatible with limiting warming to 1.5°C (i.e. having 66% chance of stabilizing at 1.5°C by 256 
2100) can still involve an extremely large increase in temperature in some locations and time 257 
frames, in the worst case more than 8°C for extreme cold night time temperatures or up to 258 
5°C for daytime hot extremes (Fig. 2). We note that these numbers are substantially larger 259 
than for present-day variability (see Suppl. Information). 260 

- The 10% highest response (“worst-case”) temperature outcome of pathways currently 261 
considered compatible with 1.5°C warming is comparable with the 66th percentile outcomes 262 
(“probable”) of scenarios that are considered for limiting warming below 2°C, at global and 263 
regional scales. This indicates that pursuing a 1.5°C compatible pathway can be considered a 264 
high-probability 2°C pathway13 that strongly increases the probability of avoiding the risks of 265 
a 2°C warmer world.  266 



 267 

Realization at single locations and times 268 

The analyses of Figs. 2 and 3 represent the statistical response over longer time frames. Several 269 
dominant patterns of response are documented in the literature4, for instance that land 270 
temperatures tend to warm more than global mean temperature on average, in particular with 271 
respect to hot extremes in transitional regions between dry and wet climates, and coldest days in 272 
high-latitudes (see also Figs. 2 and 3). Nonetheless, due to internal climate variability (and in part 273 
model-based uncertainty), there may be large local departures from this typical response at single 274 
points in time (any given year within a 10-year time frame) as displayed in Fig. 4. Many locations 275 
show a fairly large probability (25% chance) of temperature anomalies below 1.5°C, and in some 276 
cases even smaller anomalies (mostly for the extreme indices). On the other hand, there is a similar 277 
probability (25%, for 75th percentile) that some locations can display temperature increases of more 278 
than 3°C, and in some cases up to 7-9°C for cold extremes. This illustrates that highly unusual and 279 
even unprecedented temperatures may occur even in a 1.5°C climate. While some of the patterns 280 
reflect what is expected from the median response4, the spread of responses is large in most 281 
regions. 282 

 283 

Aspects insufficiently considered so far 284 

The integrated assessment models used to derive the mitigation scenarios discussed here did not 285 
include several feedbacks that are present in the coupled Human-Earth system. This includes, for 286 
example, biogeophysical impacts of land use26,26,27, potential competition for land between negative 287 
emission technologies and agriculture29,31, water availability constraints on energy infrastructure and 288 
bioenergy cropping30,31, regional implications of choices of specific scenarios for tropospheric aerosol 289 
concentrations, or behavioural and societal changes in anticipation of or response to climate 290 
impacts33,42. For comprehensive assessments of the regional implications of mitigation and 291 
adaptation measures, such aspects of development pathways would need to be factored in.  292 

We note also that non-CO2 greenhouse gas emissions have to be reduced jointly with CO2. The 293 
numbers in Table 1 consider budgets for cumulative CO2 emissions taking into account consistent 294 
evolutions for non-CO2 greenhouse gas emissions. To compare the temperature outcome of 295 
pathways from many different forcings (e.g. methane, nitrous oxide), a CO2-only emission pathway 296 
that has the same radiative forcing can be found, which is termed CO2-forcing equivalent emissions 297 
(CO2-fe)43,44. Hence stronger modulation in non-CO2 greenhouse gas emissions could be considered 298 
in upcoming scenarios. 299 

Furthermore, a continuous adjustment of mitigation responses based on the observed climate 300 
response (that can e.g. reduce present uncertainties regarding the global transient climate response) 301 
might be necessary to avoid undesired outcomes. Pursuing such “adaptive” mitigation scenarios34 302 
would be facilitated by the Global Stocktake mechanism established in the Paris Agreement. 303 
Nonetheless, there are limits to possibilities for the adaptation of mitigation pathways, notably 304 
because some investments (e.g. in infrastructure) are long-term, and also because the actual 305 
departure from a desirable pathway will need to be detected against the backdrop of internal 306 
climate variability. The latter can be large on decadal time scales as highlighted with the recent so-307 
called “hiatus” period45, but its impact can be minimized by using robust estimates of human-308 
induced warming16. Hence, while adaptive mitigation pathways could provide some flexibility to 309 



avoid the highlighted “worst-case” scenarios (Table 1), it is not yet clear to which the extent they 310 
could be implemented in practice. 311 

For a range of indicators, global mean temperature alone is not a sufficient indicator to describe 312 
climate impacts. CO2 – sensitive systems, such as the terrestrial biosphere and agriculture systems, 313 
respond not only the impact of warming but also of increased CO2 concentrations. Although the 314 
potential positive effects of CO2 fertilisation are not well constrained46, it appears that the impacts of 315 
anthropogenic emissions on those systems will depend not only on the warming inferred, but also 316 
on the CO2 concentrations at which these warming levels are reached. Similarly, impacts on marine 317 
ecosystems depend on warming as well as on changes being driven by ocean acidification47.  318 

Impacts on ocean and cryosphere will respond to warming with a substantial time lag. Consequently, 319 
ice sheet and glacier melting, ocean warming and as a result sea level rise will continue long after 320 
temperatures have peaked48. For some of these impacts, this may imply limited detectable effects of 321 
mitigation pathways in the short-term, but major ones in the long-term49. Large-scale oceanic 322 
systems will also continue to adjust over the coming centuries. One study identified as a result a 323 
continued increase of extreme El Niño frequency in a peak-and-decline scenario50. The imprints on 324 
such time-lagged systems for different 1.5°C worlds are not well constrained at present.  325 

 326 

Assessing solar radiation management (SRM) 327 

Compared to any mitigation options, climate interventions such as global solar radiation 328 
management (SRM) do not intend to reduce atmospheric CO2 concentration per se but solely to limit 329 
global mean warming. Some studies51,52,53 proposed that SRM may be used as a temporary measure 330 
to avoid global mean temperature exceeding 2°C. However, the use of SRM in the context of limiting 331 
temperature overshoot might create a new set of global and regional impacts, and could 332 
substantially modify regional precipitation patterns as compared to a world without SRM54,55. It 333 
would also have a high potential for cross-boundary conflicts because of positive, negative or 334 
undetectable effects on regional climate56, natural ecosystems57 and human settlements. Hence, 335 
while the global mean temperature might be close to a 1.5°C warming under a given global SRM 336 
deployment, the regional implications could be very different from those of a 1.5°C global warming 337 
reached with early reductions of CO2 emissions and stabilization of CO2 concentrations. In some 338 
cases, some novel climate conditions would be created because of the addition of two climate 339 
forcings with different geographical footprints. Hence, a similar mean global warming may have very 340 
different regional implications (see Fig. 1b for an illustration) and in the case of SRM would be 341 
associated with substantial uncertainties in terms of regional impacts. Furthermore, SRM would not 342 
counter ocean acidification, which would continue unabated under enhanced CO2 concentrations. 343 
Finally, there is also the issue that the sudden discontinuation of SRM measures would lead to a 344 
“termination problem”52,58. Together, this implies that the aggregated environmental implications of 345 
an SRM world with 1.5°C mean global temperature warming, would probably be very different, and 346 
likely more detrimental and less predictable, from those of a 1.5°C warmer world in which the global 347 
temperature is limited to 1.5°C through decarbonisation alone. Nonetheless, regional-scale changes 348 
in surface albedo may be worthwhile considering in order to reduce regional impacts in cities or 349 
agricultural areas21, although in-depth assessments on this topic are not yet available, and such 350 
modifications would be unlikely to substantially affect global temperature.  351 

 352 
 353 
Risks in 1.5°C warmer worlds   354 



 355 
1.5°C warmer worlds will still present climate-related risks to natural, managed, and human systems, 356 
as seen above. The magnitude of the overall risks and their geographical patterns in a 1.5°C warmer 357 
world will, however, not only depend on uncertainties in the regional climate that result from this 358 
level of warming. The magnitude of risk will also strongly depend on the approaches used to limit 359 
warming to 1.5°C and on the wider context of societal development as it is pursued by individual 360 
communities and nations, and global society as a whole. Indeed, these can result in significant 361 
differences in the magnitude and pattern of exposures and vulnerabilities59,60.  362 
 363 
For natural ecosystems and agriculture, low-emissions scenarios can have a high reliance on land use 364 
modifications (either for bioenergy production or afforestation25,29,61) that in turn can affect food 365 
production and prices through land use competition effects29,31,62. The risks to human systems will 366 
depend on the ambition and effectiveness of implementing accompanying policies and measures 367 
that increase resilience to the risks of climate change and potential trade-offs of mitigation. For 368 
example, large-scale deployment of BECCS could push the Earth closer to the planetary boundaries 369 
for land use change and freshwater, biosphere integrity and biogeochemical flows30 (in addition to 370 
pressures associated to development goals63).  371 
 372 
Also the timing of when warming can be stabilized to 1.5°C or 2°C will influence exposure and 373 
vulnerability. For example, in a world pursuing a strong sustainable development trajectory, 374 
significant increases in resilience by the end of the century would make the world less vulnerable 375 
overall59. Even under this pathway, rapidly reaching 1.5°C would mean that some regions and sectors 376 
would require additional preparation to manage the hazards created by a changing climate. 377 
 378 

Commonalities of all 1.5°C warmer worlds 379 

Because human-caused warming linked to CO2 emissions is near irreversible for more than 1000 380 
years64,65, the cumulative amount of CO2 emissions is the prime determinant to long-lived 381 
permanent changes in the global mean temperature rise at the Earth’s surface. All 1.5°C stabilization 382 
scenarios require net CO2 emissions to be zero and non-CO2 forcing to be capped to stable levels at 383 
some point64,66,67. This is also the case for stabilization scenarios at higher levels of warming (e.g. at 384 
2°C), the only differences would be the time at which the net CO2 budget is zero, and the cumulative 385 
CO2 emissions emitted until then. Hence, a transition to a decarbonisation of energy use is necessary 386 
in all scenarios.  387 

Article 4 of the Paris Agreement calls for net zero global greenhouse gas emissions to be achieved in 388 
the second half of the 21st century, which most plausibly requires some extent of negative CO2 389 
emissions to compensate for remaining non-CO2 forcing13. The timing of when net zero global 390 
greenhouse gas emissions are achieved strongly determines the peak warming. All presently 391 
published 1.5°C-warming compatible scenarios include CDR to achieve net-zero CO2 emissions, to 392 
varying degrees. CO2-induced warming by 2100 is determined by the difference between the total 393 
amount of CO2 generated (which can be reduced by early decarbonisation) and the total amount 394 
permanently stored out of the atmosphere, for example by geological sequestration. Current 395 
evidence indicate that at least some measure of CDR will be required to follow a 1.5°C-compatible 396 
emissions trajectory.  397 

 398 

Towards a sustainable “1.5°C warmer world”  399 



Emissions pathways limiting global warming to 1.5°C allow to avoid risks associated with higher 400 
levels of warming, but do not guarantee an absence of climate risks at regional scale, and are also 401 
associated with their own set of risks with respect to the implementation of mitigation technologies, 402 
in particular related to land use changes associated with e.g. BECCS or competition for food 403 
production29,30,31,33. 404 

Important aspects to consider when pursuing limiting warming to or below a global mean 405 
temperature level relate to how this goal is achieved and to the nature of emerging regional and 406 
sub-regional risks68,69,70. Also relevant are considerations of how the policies influence the resilience 407 
of human and natural systems, and which broader societal pathways are followed in terms of human 408 
development. Many but not all of these can be influenced directly through policy choices68,69,70. 409 
Internal climate variability as well as regional climate sensitivity, which display a substantial range 410 
between current climate models, are also important components of how risk will be realized. 411 
Explicitly illustrating the full range of possible outcomes of 1.5°C warmer worlds is important for an 412 
adequate consideration of the implications of mitigation options by decision makers.  413 

The time frame to initiate major mitigation measures varies in 1.5°C-compatible (or 2°C) scenarios 414 
(Table 1). However, given the current state of knowledge about both the global and regional climate 415 
responses and the availability of mitigation measures, if the potential to limit warming to below 416 
1.5°C or 2°C is to be maximised, emissions reductions in CO2 and other greenhouse gases would 417 
need to start as soon as possible, leading to a global decline in emissions following 2020 at the 418 
latest. At the same time, if potential competition for land and water between negative emission 419 
technologies, agriculture and biodiversity conservation is to be avoided, mitigation would need to be 420 
carefully designed and regulated to minimise these effects, which could otherwise act to increase 421 
food prices and reduce ecosystem services. The remaining uncertainties underscore the need for 422 
continuous monitoring of not just global mean surface temperature, but also of the deployment and 423 
development of mitigation options, the resulting emissions reductions, and in particular of the 424 
intensity of global and regional climate responses and their sensitivity to climate forcing. Together 425 
with the overall societal development choices, these various elements strongly co-determine the 426 
regional and sectoral magnitudes and patterns of risk at 2°C and 1.5°C global warming.427 
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1.48°C) 

1.88°C (1.85—
1.93°C) 

1.89°C (1.88—
1.91°C) 

2.43°C (2.42—
2.46°C) 

Warming in the Arcticg (TNnf) [°C] 4.21°C (3.65, 
4.71°C) 

5.55°C (4.80, 
6.35°C) 

5.58°C (4.82, 
6.38°C) 

7.22°C (6.49, 
8.16°C) 

Warming in the contiguous United Statesg (TXxf) 
[°C] 

2.03°C (1.64, 
2.49°C) 

2.73°C (2.21, 
3.22°C) 

2.76°C (2.23, 
3.24°C) 

3.64°C (3.23, 
3.97°C) 

Warming in Central Brazilg (TXxf) [°C] 2.25°C (2.02, 
2.60°C) 

2.92°C (2.55, 
3.44°C) 

2.94°C (2.58, 
3.47°C) 

3.80°C (3.43, 
4.12°C) 

Drying in the Mediterranean regiong [stdf] -0.96 (-1.94,  
-0.28) 

-1.09 (-2.16,  
-0.48) 

-1.10 (-2.15,  
-0.46) 

-1.41 (-2.69,  
-0.64) 

Increase in heavy precipitation eventsf in 
Southern Asiag [%] 

8.29% (4.52, 
11.98%) 

10.59% (6.75, 
16.64%) 

10.55% (6.83, 
16.64%) 

17.21% (10.24, 
24.03%) 

 673 
a 66th percentile for global temperature (i.e. 66% likelihood of being at or below values) 674 
b 90th percentile for global temperature (i.e. 10% likelihood of being at or above values) 675 
c All 1.5°C scenarios include a substantial probability of overshooting above 1.5°C global warming before returning to 1.5°C.  676 
d The values indicate the median and the interquartile range in parenthesis (25th percentile and 75th percentile) 677 
e The regional projections in these rows provide the range [median (q25, q75)] associated with the median global temperature outcomes 678 
of the considered mitigation scenarios at peak warming (see Box 1 and Suppl. Info. for details).  679 
f TNn: annual minimum night-time temperature; TXx: annual maximum day-time temperature; std: drying of soil moisture expressed in 680 
units of standard deviations of pre-industrial climate (1861-1880) variability; Rx5day: annual maximum consecutive 5-day precipitation  681 
g Same as footnote e, but for the regional responses associated with the median global temperature outcomes of the considered 682 
mitigation scenarios in 2100 (see Box 1 and Suppl. Info. for details). 683 
h  Red and yellow colors indicate whether scenarios lead to overshoot a given level of warming or not. 684 
i  Green, yellow and red colors indicate whether the global mean temperature remains below 1.5°C, between 1.5°C and 2°C, or exceeds 685 
2°C.686 
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 689 
Figure 1. Temporal and spatial dimensions 1.5°C warmer worlds. a. Typical pathways of Earth’s climate 690 
towards stabilization at 1.5°C warming. Pre-industrial climate conditions are the reference for the determined 691 
global warming. Present-day warming corresponds to 1°C compared to pre-industrial conditions. All “1.5°C-692 
warming compatible emissions pathways” currently available in the literature12,13,14,15 include overshooting 693 
over 1.5°C warming prior to stabilization or further decline. We here illustrate the example of temperature 694 
stabilization at 1.5°C in the long-term, but temperatures could also further decline below 1.5°C.  b. Not all 695 
conceivable “1.5°C warmer climates” are equivalent. These conceptual schematics illustrate the importance of 696 
the spatial dimension of distributed impacts associated with a given global warming, at the example of a 697 
simplified world with two surfaces of equal area (the given temperature anomalies are chosen for illustrative 698 
purposes and do not refer to specific 1.5°C scenarios). (left) Reference world (without warming); (top right) 699 
world with 1.5°C mean global warming that is equally distributed on the two surfaces; (bottom right) world 700 
with 1.5°C mean global warming with high differences in regional responses. 701 

 702 

Figure 2: Possible outcomes with respect to global temperature and regional climate anomalies from typical 703 
1.5°C-warming and 2°C-warming compatible scenarios at peak warming. (a) Net GtCO2 emitted until time of 704 
peak warming relative to 2016 (including carbon dioxide removal from the atmosphere) in considered scenarios 705 
from Table 1 (25thquantile (q25), median (q50), and 75th quantile (q75)). (b) Global mean temperature anomaly 706 
at peak warming (q25, q50, q75). (c-e): Regional climate anomalies at peak warming compared to the pre-707 
industrial period corresponding to the median global warming of the 2nd row (full range associated with 708 
different regional responses within CMIP5 multi-model ensemble displayed as violin plot; the median and 709 
interquartile ranges are indicated with horizontal dark gray lines). See Table 1 for more details. 710 

 711 

Figure 3: Possible outcomes with respect to global temperature and regional climate anomalies from typical 712 
1.5°C-warming and 2°C-warming compatible scenarios in 2100. (a) Net GtCO2 emitted by 2100 relative to 713 
2016 (including carbon dioxide removal from the atmosphere) in considered scenarios from Table 1 714 
(25thquantile (q25), median (q50), and 75th quantile (q75)). (b) Global mean temperature anomaly in 2100 (q25, 715 
q50, q75). (c-e) Regional climate anomalies at peak warming compared to the pre-industrial period 716 
corresponding to the median global warming of the 2nd row (full range associated with different regional 717 
responses within CMIP5 multi-model ensemble displayed as violin plot; the median and interquartile ranges are 718 
indicated with horizontal dark gray lines). See Table 1 for more details. 719 

 720 
Figure 4: The stochastic noise and model-based uncertainty of realized climate at 1.5°C. Temperature with 721 
25% chance of occurrence at any location within 10-year time frames corresponding to DTglob=1.5°C (based on 722 
CMIP5 multi-model ensemble). The plots display at each location the 25th percentile (Q25; a, c, e) and 75th 723 
percentile (Q75; b, d, f) values of mean temperature (Tmean; a, b), yearly maximum day-time temperature 724 
(TXx; c, d), and yearly minimum night-time temperature (TNn; e, f), sampled from all time frames with 725 
DTglob=1.5°C in all RCP8.5 model simulations of the CMIP5 ensemble (see Box 1 for details). 726 

727 
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responses within CMIP5 multi-model ensemble displayed as violin plot; the median and interquartile ranges are 759 
indicated with horizontal dark gray lines). See Table 1 for more details. 760 
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Figure 4: The stochastic noise and model-based uncertainty of realized climate at 1.5°C. Temperature with 763 
25% chance of occurrence at any location within 10-year time frames corresponding to DTglob=1.5°C (based on 764 
CMIP5 multi-model ensemble). The plots display at each location the 25th percentile (Q25; a, c, e) and 75th 765 
percentile (Q75; b, d, f) values of mean temperature (Tmean; a, b), yearly maximum day-time temperature 766 
(TXx; c, d), and yearly minimum night-time temperature (TNn; e, f), sampled from all time frames with 767 
DTglob=1.5°C in all RCP8.5 model simulations of the CMIP5 ensemble (see Box 1 for details). 768 
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 775 
Box 1. Emissions budgets and regional projections for 1.5°C and 2°C global warming 776 

The emissions budget estimates of Table 1 are based on scenarios currently considered compatible with 777 
limiting global warming (dTglob) to 1.5°C and 2°C, either in 2100 or during the entire 21st century15. The 778 
emissions pathways are determined based on their probability of limiting dTglob below 1.5°C or 2°C by 2100 779 
using the probabilistic outcomes of a simple climate model (MAGICC71) exploring the range of climate system 780 
response as assessed in the IPCC AR572. The 50th (Suppl. Info.), 66th and 90th percentile (Table 1) MAGICC global 781 
transient climate response (TCR) values in the scenarios are 1.7, 1.9, and 2.4 [°C], respectively, overall 782 
consistent with the assessed range for this parameter (>66% in the 1-2.5 [°C] range, less than 5% greater than 783 
3 [°C]) in the IPCC AR572. The current airborne fraction (ratio of accumulated atmospheric CO2 to CO2 emissions 784 
over the decade 2011-2020) in these scenarios with this MAGICC version has been estimated at 0.55, which is 785 
20% higher than the central estimate for the most recent decade given in refs73,74, but ref74 emphasizes that 786 
this quantity is uncertain and subject to variability over time. The provided estimates are consistent with 787 
corresponding values from scenarios assessed in the IPCC AR512,14 (see Suppl. Table S1), but have slightly larger 788 
estimates for the remaining cumulative CO2 budgets, consistent with other recent publications34,35,36.  Both 789 
sets of scenarios imply that for limiting dTglob below 1.5°C by 2100 strong near-term mitigation measures are 790 
needed supported by technologies capable of enabling net-zero global CO2 emissions near to mid-century. 791 
 792 
Table 1 and Figures 2-3 also provide estimates of regional responses associated with given dTglob levels (at 793 
peak warming and in 2100). The values are computed based on decadal averages of 26 CMIP5 global climate 794 
model simulations and all four Representative Concentrations Pathways (RCP scenarios) following the 795 
approach from refs4,37 (see Suppl. Info. for more details). Decades corresponding to a 1.5°C or 2°C warming are 796 
those in which the last year of the decade reaches this temperature, consistent with previous publications3,4,37. 797 
Corresponding regional responses for the median estimates of the considered scenarios are provided in Suppl. 798 
Table S2 and Suppl. Figures S1 and S2. Respective estimates of spread for recent (0.5°C) and present-day (1°C) 799 
global warming are provided in the Suppl. Figure S3. 800 
 801 
Figure 4 is based on the same 26 CMIP5 models’ subset as used for Table 1 and Figures 2-3, but uses RCP8.5 802 
simulations only. For each simulation, the ensemble percentiles are calculated for the time step corresponding 803 
to the decade at which a 1.5°C warming occurs for the first time. Statistics are computed over all 26 climate 804 
models and all years within the given decade. 805 
 806 
The databases underlying the analyses of Table 1 and Figs. 2-3 are described under the data availability 807 
statement. The R code used to analyze MAGICC outputs in this paper is available from R.S. on reasonable 808 
request. The scripts used for the regional analyses provided in Table 1 and Figs 2-4 are available from R.W. and 809 
S.I.S. upon request. 810 
 811 
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