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We estimate the impacts of drought, as defined by the U.S. Drought Monitor (USDM), on crop

yields and farm income in the United States during the 2001–2013 time period. Our empirical strat-

egy relies on panel data models with fixed effects that exploit spatial and temporal variability in

drought conditions and agricultural outcomes at the county level. We find negative and statistically

significant effects of drought on crop yields equal to reductions in the range of 0.1% to 1.2% for corn

and soybean yields for each additional week of drought in dryland counties, and 0.1% to 0.5% in irri-

gated counties. Region-specific results vary, with some regions experiencing no yield impacts from

drought, while yield reductions as high as 8.0% are observed in dryland counties in the Midwest for

every additional week of drought in the highest USDM severity category. Despite this impact on

crop yields, we find that additional weeks of drought have little to no effect on measures of farm in-

come. While precipitation and temperature explain most of the variability in crop yields, we find that

the USDM captures additional negative impacts of drought on yields.
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Recent years have seen an increased interest
in the economic impacts of droughts in the
United States as a result of disasters such as
the 2012 Midwest drought and the 2011–2017
drought in California. This attention has been
reinforced by predictions that droughts will be-
come more frequent and more severe in the
future with the progression of climate change
(Intergovernmental Panel on Climate Change;
IPCC 2014). While droughts have the potential
to affect an entire regional economy, the agri-
cultural sector is particularly vulnerable

(Climate Change Science Program 2008;
Walthall et al. 2012). Droughts are associated
with below-average precipitation, which can
affect crop yields, and reduce surface water
and groundwater supplies, which can affect ir-
rigation and livestock watering. Furthermore,
droughts are associated with periods of above-
average temperatures that can exacerbate hy-
drological and biophysical stress. These
impacts can lead to a decrease in revenues
from crop and livestock sales, changes in pro-
duction costs—or both—possibly reducing net
farm income and negatively affecting commu-
nities that are dependent on agriculture.

Despite this interest in the economic
impacts of drought, few studies have quanti-
fied the impact of droughts on physical meas-
ures such as crop yield, or monetized
measures, such as farm income. One reason
for this lack of research is that there is no uni-
versally accepted quantitative definition of
drought. Instead, drought is often defined
qualitatively as a deficit of water relative to
normal conditions as referenced by water sup-
ply demand and management (Wilhite 2000;
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Lloyd-Hughes 2014). As a result, what consti-
tutes a drought varies across regions and time
periods, and is also a function of the local so-
cioeconomic context, including factors such as
the composition of the local economy, access
to infrastructure, and household income levels
and distribution. At the same time, govern-
ments at the federal, state, and municipal lev-
els often use some form of composite drought
index instead of individual thresholds for hy-
drologic measures (e.g., precipitation or reser-
voir levels) for informing drought-related
policies such as State of Emergency proclama-
tions and eligibility for drought disaster assis-
tance. Furthermore, public sector drought
policies in the United States act as triggers for
the distribution of a significant amount of
public resources to agricultural communities.
For example, in fiscal year 2014, the federal
government designated $873 million across
11 western states for drought-related crop in-
surance and programs that were a result of
drought emergency declarations (Mount et al.
2016).

In the United States, the composite
drought index most often used by policy-
makers is the U.S. Drought Monitor
(USDM). The USDM consists of a weekly
map that indicates which regions of the coun-
try are currently in drought, as well as the in-
tensity of those droughts. It is used by a
variety of federal agencies including the
USDA and the Internal Revenue Service
(IRS), as well as state government agencies,
primarily for programs related to the agricul-
tural sector (National Drought Mitigation
Center; NDMC 2016). Given the key role
that the USDM plays in U.S. drought policy
in the agricultural sector, evidence regarding
the relationship between USDM drought cat-
egorizations and realized agricultural out-
comes is desirable.

In this paper, we estimate the impacts of
drought, as defined by the USDM, on crop
yields and farm income in the United States
during the 2001–2013 time period. Our analy-
sis makes two main contributions to the liter-
ature. First, to our knowledge, this is the first
study to confirm that drought information
from the USDM is correlated with observed
agricultural outcomes. This evidence is valu-
able because the USDM plays a critical role
in decisions regarding the allocation of finan-
cial resources in response to drought.
Furthermore, by quantifying the impacts on
crop yields and farm income that are associ-
ated with USDM drought categorizations, we

provide useful information for policymakers
who are designing USDM-based eligibility
requirements for drought assistance. Our sec-
ond contribution is to add to existing evi-
dence regarding the effect of weather and
climate on agricultural outcomes. While pre-
cipitation and temperature have received sig-
nificant attention as determinants of current
and future agricultural output, quantitative
evidence on the effect of drought as an ex-
treme event is scarce. Drought, as defined by
the USDM and other composite drought in-
dices, is driven not only by precipitation and
temperature measures; it is also determined
by indicators such as soil moisture, stream-
flow, vegetation indices, reservoir and lake
levels, groundwater levels, and snowpack.
These other dimensions of drought can gen-
erate impacts on farm income beyond those
that are identified for below-average precipi-
tation or above-average temperatures.

Our analysis is based on a panel dataset
that was constructed by matching crop yield
data from the USDA’s National Agricultural
Statistics Service (NASS), and farm income
data from the Bureau of Economic Analysis
(BEA) to drought intensity categorizations in
the USDM at the county level. Our empirical
strategy relies on panel data models with
fixed effects that exploit spatial and temporal
variability in drought conditions and crop
yield and farm income, allowing us to esti-
mate an average nationwide impact as well as
impacts in specific regions. These estimates
reflect the impact of an additional week of
drought on crop yield and annual farm in-
come, inclusive of all the on-farm activities
that are available to agricultural producers
that help mitigate the biophysical impact of
drought on crops and livestock. We run sepa-
rate regressions for irrigated and dryland
counties because we expect the effect of
drought on agricultural outcomes to vary be-
tween these two types of counties.

For the average dryland county, we find
negative and statistically significant impacts
of drought on crop yields equal to reductions
in the range of 0.1% to 1.2% for corn and
soybeans for each additional week of
drought. Impacts in irrigated counties are
smaller in magnitude, ranging from 0.1% to
0.5% for each additional week of drought.
Region-specific results are mixed, with some
regions experiencing no yield impacts from
drought, while yield reductions in dryland
counties in the midwest are as high as 8.0%
for corn and 3.1% for soybeans for every

194 January 2019 Amer. J. Agr. Econ.

D
ow

nloaded from
 https://academ

ic.oup.com
/ajae/article-abstract/101/1/193/5051676 by St Petersburg State U

niversity user on 19 July 2020



additional week of exceptional drought, the
highest level of drought severity in the USDM
categorization. We find that additional weeks
of drought have little to no effect on the value
of cash receipts and production expenses, per-
haps due to farmers receiving higher prices as
a result of drought-induced local scarcity in ag-
ricultural commodities. Finally, we find that
precipitation and temperature explain most of
the variability in crop yields during the time
period of our analysis, but the USDM does
capture additional negative impacts of drought
on yields.

The paper proceeds as follows. The next
section contains a brief review of existing
studies on the relationship between droughts
and agricultural outcomes and a description
of the USDM and its current use in federal
drought policy. This is followed by sections
describing our data and empirical strategy,
respectively. In the next section, we present
our estimates for the effect of drought on
crop yields and farm income, while the final
section concludes.

Background

Droughts and Agricultural Outcomes

From a biophysical standpoint, the effects of
drought on crops are well studied, particu-
larly in the context of potential future
impacts due to climate change. In addition to
retrospective analyses of past droughts on
crop productivity (e.g., Ciais et al. 2005; Zhao
and Running 2010), biophysical research on
droughts and crops has addressed the benefits
of drought tolerance practices (e.g.,
Cattivellia et al. 2008; Craine et al. 2013) and
the role of extreme heat (e.g., Lobell et al.
2013). The effects of drought on livestock
have also been studied, with a focus on devel-
oping countries and the role of livestock act-
ing as a buffer against income shocks from
drought (Fafchamps, Udry, and Czukas 1998;
Kinsey, Burger, and Gunning 1998; Kazianga
and Udry 2006).

A surprisingly small number of studies con-
duct ex post estimations of the economic cost
of droughts on the agricultural sector. For ex-
ample, Riebsame, Changnon, and Karl (1991)
present a detailed narrative of the 1988–1989
drought in the United States, including a quan-
titative impact analysis that yields an esti-
mated crop loss of $15 billion due to output
and price changes in corn, barley, grain

sorghum, oats, soybeans, and wheat. However,
the authors note that because of high prices
resulting from the drought, non-drought area
production, inventory sell-offs, and irrigation,
net agricultural income in 1988 rose slightly
from the previous non-drought year despite
the crop losses. The authors also find that neg-
ative impacts for specific individuals and
regions were substantial. Wheaton et al.
(2008) evaluate drought impacts on agriculture
by comparing production values during the
2001–2002 Canadian drought to that in bench-
mark years. Estimated crop production value
losses were in the range of $1.7 to $2.4 billion
depending on the region, while impacts on
cash receipts were smaller due to inventory
adjustments.

Horridge, Madden, and Wittwer (2005)
take an agricultural production function ap-
proach to estimate the impacts of the 2002–
2003 Australian drought, aggregating values
from 38 sectors and 45 regions. The authors
find significant aggregate effects from agricul-
ture on the national economy, despite the rel-
atively small role of the sector in Australia,
with income losses of up to 20% and a 1.6%
reduction in Gross Domestic Product. More
recently, Howitt et al. (2014, 2015) and
Medell�ın-Azuara et al. (2016) estimated the
economic impact of drought in California on
the state’s agricultural sector. Using an eco-
nomic optimization model of crop choice that
includes regional water availability con-
straints, the authors calculated the net water
shortage (5 million acre feet) to result in sig-
nificant losses in crops ($2 billion) and dairy
and livestock ($553 million), as well as addi-
tional groundwater pumping costs ($1.3 bil-
lion) and lost jobs (43,000) in 2014, 2015, and
2016. Unlike these previous ex post studies,
which estimate costs to the agricultural sector
for entire drought events, our econometric
approach yields estimates of economic im-
pact for marginal increases in the duration
and intensity of droughts. This information
may be useful for policymakers who need to
allocate scarce financial resources for drought
assistance and emergency programs.

A different strand of research addresses
specific types of farmer adaptation to drought.
For example, Cavatassi et al. (2011) investi-
gate whether farmers in Ethiopia adopt mod-
ern, drought-tolerant varieties of sorghum as a
risk reduction strategy in the face of drought.
Moreover, Ding, Schoengold, and Tadesse
(2009) investigate the relationship between
drought and flood events and the likelihood
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that farmers will adopt conservation tillage
practices, using county-level data from Iowa,
Nebraska, and South Dakota. While our data
do not allow us to observe the evolution of
specific on-farm practices in response to
changes in drought conditions, our estimates
can be interpreted as including the mitigating
effects of some of these practices, namely,
those that can be adopted in response to the
onset of a drought.

Our paper is perhaps most similar to a
group of studies that addresses the relation-
ship between agricultural outcomes and spe-
cific weather components, such as
precipitation and temperature. The main goal
of these studies is to use these estimated rela-
tionships to predict the effects of future cli-
mate change on U.S. agriculture. Mendelsohn,
Nordhaus, and Shaw (1994) adopt a hedonic
approach by modeling farmland values and
rents as a function of temperature, precipita-
tion, soil type, and other physical and socio-
economic variables. The authors then use
uniform precipitation and temperature
increases to simulate how agricultural farm-
land values would vary under climate change,
finding effects that are highly nonlinear and
that vary by geography and season. Schlenker,
Hanemann, and Fisher (2005) refined this ap-
proach by differentiating irrigated from
rainfed agriculture, finding statistically signifi-
cant differences in coefficient estimates.
Deschênes and Greenstone (2007) take a dif-
ferent approach by exploiting year-to-year
weather fluctuations rather than climate differ-
ences across counties, and by using yields and
profits as outcome variables instead of farm-
land values, concluding that climate change
impacts will be neutral or possibly positive due
to adaptation. However, Fisher et al. (2012)
find different results when replicating the
Deschênes and Greenstone (2007) analysis
while including inventory adjustments and cor-
rection for data irregularities. The replication
finds significant negative economic impacts of
climate change on agricultural production. As
mentioned earlier, our analysis differs from
these studies because our explanatory varia-
bles consist of drought categorizations that are
actively used in federal drought policy, and re-
flect a larger universe of weather and hydro-
logic conditions.

The U.S. Drought Monitor

The USDM is an expert-based national map
of drought conditions that is produced jointly

by the USDA, the National Oceanic and
Atmospheric Administration (NOAA), and
the National Drought Mitigation Center
(NDMC) on a weekly basis.1 The maps desig-
nate general drought areas as being in one of
five intensity classes, ranging from
“abnormally dry” (abbreviated as D0),
“moderate drought” (D1), “severe drought”
(D2), “extreme drought” (D3), and
“exceptional drought” (D4). Each intensity
class is associated with its probability of oc-
currence, expressed as a percentile, on the
basis of a 1932–2001 data record of drought
indicators (Svoboda et al. 2002; Houborg
et al. 2012). Table 1 lists the percentiles asso-
ciated with each drought intensity class; the
classification scheme indicates, for example,
that droughts of intensity D3 or worse have a
5% chance of occurring in any given location.

The USDM is not strictly a drought index,
but rather a composite product developed
from a suite of climate indices and numerical
models, as well as from input from regional
and local experts. The six key physical indica-
tors used by the USDM authors are a drought
index (specifically, the Palmer Drought
Severity Index), percentiles from a soil mois-
ture model, daily streamflow percentiles, the
percent of normal precipitation, a standard-
ized precipitation index, and a remotely-
sensed vegetation health index (Svoboda
et al. 2002). The authors also rely on supple-
mentary indicators such as humidity and tem-
perature departure from normal, reservoir,
and lake levels, surface water supply indices,
snowpack, and groundwater levels. The
authors then seek input and verification from
regional and state climatologists, agricultural
and water resource managers, National
Weather Service field employees, and others
to help ground-truth the maps based on local

Table 1. Categories of Drought Intensity
Used by the U.S. Drought Monitor

Category Drought Intensity Level Percentile

D0 Abnormally dry 20 to � 30
D1 Drought, moderate 10 to � 20
D2 Drought, severe 5 to � 10
D3 Drought, extreme 2 to � 5
D4 Drought, exceptional � 2

1 The USDM map for any given week can be accessed at
http://droughtmonitor.unl.edu/.
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knowledge of drought conditions and
impacts. All of this information is subjectively
incorporated into a final map of drought in-
tensity categorizations that are considered
with reference to their historical frequency of
occurrence for a location and time of year, so
that categorizations reflect local impacts and
vulnerability (Svoboda et al. 2002).

The fact that the USDM is a composite
product developed by a panel of experts may
make it less “objective” than specific weather
indicators such as precipitation and tempera-
ture. However, drought is driven by multiple
environmental stresses that may combine in
ways that are not entirely predictable and
that may cause cascading impacts (National
Research Council; NRC 2007). The USDM
has the benefit of incorporating many more
types of information that can improve under-
standing of drought conditions. In addition,
the USDM is a timely and easily interpreted
data product, making it readily usable by reg-
ulators, producers, and the general public in
drought-related decisions.

Another drawback of using the USDM to
determine the impacts of drought on agricul-
ture is that it includes a measure of vegeta-
tion health. In the context of our empirical
analysis, the inclusion of vegetation health
may make our regressors endogenous.
Because of the way the USDM is developed,
it is impossible to determine how much em-
phasis is placed on vegetation, and as a result,
it is impossible to determine the degree to
which the endogeneity is problematic for esti-
mation. Nonetheless, to the extent that the
USDM is used to inform drought policy, our
empirical results can help decision makers
understand how USDM categorizations re-
late to agricultural outcomes.

Despite its drawbacks, the USDM is for-
mally used to inform several major drought
management decisions. As of 2012, the
USDA’s Secretarial disaster designation pro-
cess provides for nearly automatic designation
for a county when, during the growing season,
any portion of the county is classified by the
USDM as being affected by a drought with an
intensity level of D2 for eight consecutive
weeks, or a higher drought intensity level for
any length of time (USDA 2015). In addition,
the USDA has utilized the USDM to deter-
mine drought disaster assistance program eligi-
bility in programs such as the Livestock Forage
Disaster Program (LFP), the Livestock
Assistance Grant Program (LAGP),
Commodity Credit Corporation surplus stock

sales, and emergency loans through Emergency
Disaster Designations and Declarations.

The LFP, which was made a permanent
program by the U.S. Agricultural Act of
2014, provides eligible livestock producers
payments that are equal to 60% of their
monthly feed costs. Producers are eligible for
one monthly payment if they own or lease
grazing land or pastureland located in a
county rated by the USDM as having, during
the normal grazing period, a D2 drought for
eight consecutive weeks or more, and addi-
tional monthly payments for weeks in D3 or
D4 drought (USDA 2017a). Between 2011
and 2016, more than $6 billion in LFP funds
were awarded (USDA 2017b). The LAGP,
the predecessor to the LFP, awarded $50 mil-
lion in 2007 alone (USDA 2006). Persistent
drought conditions between 2001 and 2003 in
the central United States prompted a
Commodity Credit Corporation (CCC) sell-
off of surplus dry milk to supplement feed sup-
plies to impacted livestock producers.
Eligibility for these sales hinged on USDM
drought designations; if on March 11 2003, any
part of a county was included in the D4 cate-
gory, or if it was in the D3 category and expe-
rienced D4 sometime between September 3
2002 and March 11 2003, surplus dry milk sales
were available to producers in the county
(USDA 2003). Automatic disaster designa-
tions triggered by the USDM authorize emer-
gency loans to producers in affected counties
as well as in adjacent counties; more than $56
million in emergency farm loans were pro-
vided in the 2015 and 2016 fiscal years (al-
though not all loans are related directly to
drought; USDA 2017c). The IRS also uses the
USDM to determine the time frame for waiv-
ing gains from livestock replacement pur-
chases due to drought (U.S. Department of
Treasury; USDT 2016). Finally, the private
sector uses the USDM in order to make deci-
sions about resource allocation that may be
affected by the regional and temporal distribu-
tion of drought (Bernknopf et al. 2018). In
many states, USDM categorizations are
combined with location-specific levels of its
component metrics and serve as triggers for
action in drought preparedness plans.

Data

The key explanatory variables in our data set
are based on observations of USDM drought
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categorizations, precipitation, and tempera-
ture for 3,080 counties for every year between
2001 and 2013. Our dependent variables are
county-level yields of corn and soybeans, and
measures of farm income per agricultural
acre. Yield and farm income data are not
available for all counties for all years, so the
number of county-year observations varies
across our econometric specifications.

USDM Data

Weekly USDM drought intensity categoriza-
tions do not necessarily follow county bound-
aries. Given our interest in drought’s effects
on agricultural outcomes, we develop annual
county-level USDM measures that reflect
drought occurrence in agricultural areas
within counties during the twelve months
preceding the end of the growing season.
Specifically, for each week, we quantify the
percentage of county agricultural area
experiencing each USDM drought category
using a geographic information system (GIS).
Values for each drought level are summed
from October of the previous year to
September of the current year, representing
the general time window during which crops
are affected by drought. County agricultural
areas were determined by aggregating agri-
cultural land cover categories observed in the
2008 Cropland Data Layer.2 Thus, our
drought variables are defined as the number
of weeks that a county experiences a drought
of a given severity level, where each week is
weighted by the percentage of the county’s
agricultural area affected by that level of
drought during that week. For example, our
drought variable D1ist, representing exposure
to drought intensity level D1 for county i in
state s year t, can be expressed as

ð1ÞD1ist ¼
X

w

ðproportion of county i

agricultural area in D1 drought
during week wÞ

where w is the index for weeks falling be-
tween October of year t – 1 and September of
year t. Used as an explanatory variable in a
regression, the coefficient associated with this
variable can be interpreted as the effect of an

additional week of D1 drought covering all of
the agricultural area in the county.

Summary statistics for the aggregated
USDM data are presented in the upper por-
tion of table 2. As would be expected, the av-
erage number of weeks that counties are
assigned to a particular drought intensity
class is smaller for more intense drought clas-
ses. In addition, some regions of the United
States have experienced greater variability in
drought conditions relative to other regions.
Figure 1 is a map that illustrates regional dif-
ferences in the variability of drought condi-
tions observed over the time period covered
by our USDM data. The map shows that
counties with the most variable drought con-
ditions are located along a band starting in
Texas and extending northward through the
High Plains. A portion of the Southeastern
United States also exhibits high variability in
drought. Because our econometric specifica-
tions rely on the use of county fixed effects,
our coefficient estimates will be driven by the
relationship between drought and agricul-
tural outcomes in these high-variability
counties.

Crop Yield Data

In order to evaluate the effect of drought (as
designated by the USDM) on agricultural
production, we utilize corn and soybean yield
data, available annually from 2001 through
2013 from NASS.3 Yield variables represent
crop-specific ratios of total county production
to total county acres harvested.4 Yield data,
while surveyed annually, are not available for
every county-year. Missing observations rep-
resent county-years with no production,
county-years with a sufficiently small number
of producers such that information is not dis-
closed for privacy reasons, or county-years
that simply were not surveyed.

Farm Income Data

Farm income data were obtained from the
Bureau of Economic Analysis (BEA) for the

2 The 2008 Cropland Data Layer can be accessed at: https://
nassgeodata.gmu.edu/CropScape/.

3 NASS crop yield data can be accessed at: https://quickstats.
nass.usda.gov/.

4 Existing studies on the impacts of weather on agricultural
outcomes use either harvested acres (e.g., Annan and Schlenker
2015) or planted acres (e.g., Deschênes and Greenstone 2007) to
calculate crop yields. There is little guidance in the literature on
which acreage measure is preferable. We use harvested acres,
which is the default choice in reporting by NASS and the Food
and Agriculture Organization of the United Nations (FAO).
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three USDA Census of Agriculture years
that overlap our USDM data timeframe:
2002, 2007, and 2012. Although the BEA pro-
vides farm income estimates for every year,
only census-year data were used because they
are the only years for which farm income esti-
mates are consistently based on census data
and not interpolated or imputed (Bureau of
Economic Analysis; BEA 2015). We choose
two outcomes of interest that reflect farm
revenues and costs, both of which can be af-
fected by drought through a variety of chan-
nels: (a) total cash receipts from marketings
plus the value of inventory change; and (b)
production expenses.

We rely on BEA farm income data instead
of census data because BEA provides esti-
mates of the value of inventory change, which

has been shown to be an important compo-
nent of farmer decision making in the pres-
ence of weather fluctuations (Riebsame,
Changnon, and Karl 1991; Wheaton et al.
2008; Fisher et al., 2012). The major field
crops in the United States are often stored by
farmers in years with high yields or low pri-
ces, and these stocks are depleted in years of
high prices or low yields. Similarly, livestock
producers may alter their herd sizes in reac-
tion to market or weather conditions. Total
cash receipts from marketings combined with
the value of inventory change represents rev-
enues generated by commodities produced
under the current year’s conditions. Since
these data constitute total county values, they
are normalized by the total county agricul-
tural acres for that year; data on agricultural

Table 2. Summary Statistics

Variable Mean Std. dev. Minimum Maximum Observations

# weeks in D0 (weighted by %
agricultural area affected)

8.47 7.34 0 50.98 40,040

# weeks in D1 (weighted by %
agricultural area affected)

5.66 7.11 0 51.05 40,040

# weeks in D2 (weighted by %
agricultural area affected)

3.87 6.8 0 52 40,040

# weeks in D3 (weighted by %
agricultural area affected)

2.26 5.84 0 52 40,040

# weeks in D4 (weighted by %
agricultural area affected)

0.8 3.55 0 51.15 40,040

Cash receipts from marketings plus
value of inventory change (in
thousands of U.S. dollars)

100,858 201,018 0 5,033,282 9,240

Production Expenses (in thousands of
U.S. dollars)

94,441 161,973 0 3,661,699 9,240

Cash receipts from marketings plus
value of inventory change / farm
acres (in thousands of U.S. dollars)

0.5 0.97 0 44.47 9,126

Production Expenses / farm acres (in
thousands of U.S. dollars per acre)

0.48 0.81 0 37.04 9,126

Soy yield (bushels per acre) 37.59 10.44 0.7 68.5 21,247
Corn yield (bushels per acre) 126.04 37.12 4.5 244 25,188
Maximum harvested irrigated cropland

acres / Harvested cropland acres
0.19 0.3 0.000015 1 2,909

Soybean moderate heat degree days
(Celsius and days, thousands)

1.9 0.54 0.22 3.22 40,027

Corn moderate heat degree days
(Celsius and days, thousands)

1.87 0.52 0.22 3.15 40,027

Soybean extreme heat degree days
(Celsius and days, hundreds)

0.49 0.59 0 6.1 40,027

Corn extreme heat degree days (Celsius
and days, hundreds)

0.71 0.74 0 7.06 40,027

Precipitation (meters) 0.56 0.23 0.01 1.51 40,027

Note: Monetary values expressed in 2009 U.S. dollars.
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acres are also available from NASS. Thus, we
explore the effect of drought on revenues
from current production and production
expenses per agricultural acre.5 Although our
farm income measures are only available for
three years, county coverage is better than
for our crop yield data, covering most coun-
ties in the lower 48 states.

Irrigated Acreage Data

In order to explore the potential mitigating
effects of irrigation on drought impacts, we
collected additional data from NASS that
allows us to assign counties to one of two
groups: irrigated counties and dryland coun-
ties. In order to designate a county as irri-
gated or dryland, we first take the area of
harvested cropland in the county that is irri-
gated and divide it by the total area of har-
vested cropland in that county as reported in
the 1997, 2002, 2007, and 2012 censuses. This
value represents the proportion of harvested
cropland in the county that is irrigated in
each census year. We then take the largest
proportion observed for each county across

the four census years and use it as a time-
invariant variable that describes the potential
for farmland in the county to be irrigated.6

We define a county to be irrigated if the pro-
portion of harvested cropland that is irrigated
is greater than 15%. Counties with dryland
farming are those in which the proportion of
harvested cropland that is irrigated is less
than 15%.7

Weather Data

We rely on modeled precipitation and tem-
perature data, developed by Schlenker and
Roberts (2009), to determine annual growing
season weather conditions in agricultural
areas. Specifically, we calculate cumulative
precipitation and both moderate and extreme
heat degree days (Snyder 1985) between

Figure 1. Variance of weighted drought index based on USDM drought classifications 2001
through 2013

Note: Weighted drought index is calculated by summing annual drought variables after they have been multiplied by a factor corresponding to severity (e.g.,

weeks in D0 is the identity and weeks in D4 is multiplied by five). The figure illustrates the regional variance of drought 2001 through 2013. The greatest vari-

ation occurs in the Western and Southeastern United States (darker shades).

5 All monetary figures are expressed in terms of 2009 US
dollars.

6 For some counties, data on irrigated harvested cropland area
is not available in all Census years, and as a result, the proportion
of harvested cropland that is irrigated cannot be calculated for
every Census year. For these counties, we take the maximum
value of the proportion of harvested cropland that is irrigated
across years in which data are available.

7 The choice of a 15 percent cutoff for the proportion of har-
vested cropland that is irrigated is consistent with definitions of
irrigated and non-irrigated counties in previous studies, which
use cutoffs that range from 5 percent to 20 percent [Schlenker
et al., 2005; Deschênes and Greenstone, 2007].
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April and September. County averages of
daily precipitation and degree days observed
in agricultural areas are summed throughout
the growing season. Following Annan and
Schlenker (2015), we implement different
growing degree day temperature thresholds
depending on the crop in question. Bounding
temperatures for moderate heat degree days
for corn and soybeans are 10-29�C and 10-
30�C, respectively; extreme heat degree days
are those above 29�C and 30�C for corn and
soybeans, respectively.

Summary statistics for all agricultural and
weather data are presented in table 2.
Figure 2 presents four maps that indicate the
irrigated and dryland counties that are repre-
sented in our corn yield, soybean yield, and
farm income regressions. Our panel is unbal-
anced due to inconsistent availability of crop
yield data across years. The empirical analy-
sis presented below is based on this unbal-
anced panel, although using a balanced panel
in which counties with missing years of data

are dropped does not lead to significantly dif-
ferent results.

Empirical Strategy

The Impacts of Drought on Crop Yields

Our empirical strategy identifies the net
impacts of additional weeks of drought in a
given year, at various levels of intensity, on
crop yields and measures of farm income at
the county-year level, exploiting spatial and
inter-temporal variation in agricultural out-
comes, drought intensity, and drought dura-
tion. First, we consider a parsimonious fixed-
effects specification for log crop yield:

ð2Þ yist ¼ aþDist
0 � Cþ kt þ ui þ gsðtÞ þ eist

where Dist represents a vector of five varia-
bles indicating the area-weighted number of

Figure 2. County observations included in regression models employing different dependent
variables

Note: Light shades represent dryland counties and dark shades represent irrigated counties
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weeks in year t that agricultural areas of
county i in state s were categorized as
experiencing each of the five USDM drought
intensity levels. County fixed effects (ui) help
obtain unbiased estimates in the presence of
unobserved time-invariant characteristics of
counties that affect their agricultural outcomes
in the face of drought, while year dummies (kt)
help control for common trends that may be
correlated with explanatory variables such as
drought occurrence. We also control for the
fact that yields are trending upward over time
by using a state-specific linear time trend gsðtÞ.
The vector C contains our coefficients of inter-
est, which capture the effect of an additional
week of drought at each USDM intensity level
on crop yields. We omit a variable representing
the number of weeks that a county is not indi-
cated as being in any drought status, so the
coefficients in C can be interpreted as the im-
pact on crop yields when all of a county’s agri-
cultural area is affected by an additional week
of drought of a given severity (D0 through D4)
relative to not being in any drought at all.

To provide a comparison to models from
previous studies that have estimated the rela-
tionship between crop yields and weather vari-
ables such as temperature and precipitation, we
also estimate a version of equation (2) in which
we replace the vector of drought variables Dist

with a vector of weather variables, Wist:

ð3Þ yist ¼ aþWist � Dþ kt þ ui þ gsðtÞ þ eit:

Following Annan and Schlenker (2015),
for our crop yield regressions, our weather
variables include (a) the number of degree
days of moderate heat, (b) the number of de-
gree days of extreme heat, (c) annual precipi-
tation, and (d) annual precipitation squared.
These regressions will help illustrate whether
or not the USDM drought variables are supe-
rior to the weather variables traditionally
used to estimate crop yield outcomes—
namely, temperature and precipitation.

A third set of crop yield regressions
includes both drought variables Dist and
weather variables Wist:

ð4Þ yist ¼ aþDist � CþWist � Dþ kt þ ui

þ gsðtÞ þ eist:

The purpose of these regressions is to ex-
amine whether the two types of variables—
drought and weather—can explain different
aspects of variability in crop yields.

We estimate models (2), (3), and (4) using
observed yields of corn as well as soybeans.
We run separate regressions for irrigated and
dryland counties. Irrigation is known to help
counteract the deleterious effects of drought,
at least in the short run (Madariaga and
McConnell 1984; O’Brien et al. 2001;
Hansen, Libecap, and Lowe 2009; Hornbeck
and Keskin 2014), and studies have shown
that accounting for irrigation in an analysis of
the impacts of climate change on U.S. agri-
culture leads to qualitatively different results
(Schlenker, Hanemann, and Fisher 2005,
2006).

It is important to note that while time-
invariant characteristics of counties that af-
fect crop yields are controlled for by our fixed
effects specifications, the impacts of drought
and weather on crop yields estimated in C
and D may include some mitigating factors as-
sociated with farmer behavior and relevant
institutional, market, and policy environ-
ments that change over time differently
across counties. For example, farmers may be
able to curtail the impacts of drought and
weather fluctuations on crop yields within the
growing season by the following: increasing
irrigation; changing harvest patterns and tim-
ing; and augmenting labor, fertilizer, and
other production inputs. Other factors that
may benefit farmers differentially in the pres-
ence of drought include crop insurance pay-
ments and government drought disaster
assistance.

We forgo specifications of Equations (2),
(3), and (4) that implement state-by-year
fixed effects in the place of year dummies and
state-specific time trends. State-by-year fixed
effects may seem appealing because they will
help control for state-level inter-temporal
shocks such as changes in state-level agricul-
tural policy programs, agricultural markets,
or technological change. However, in our em-
pirical context, state-by-year fixed effects
have the potential to absorb a significant
amount of variance in drought conditions,
leading to large standard errors. This concern
was highlighted by Fisher et al. (2012), who
criticized the use of state-by-year fixed effects
by Deschênes and Greenstone (2007) in
econometric specifications for identifying the
effect of temperature on agricultural yield
and profits. As a result, the source of varia-
tion in our econometric specification is funda-
mentally different from that which is used to
identify the impacts of weather on agricul-
tural outcomes in existing studies. Studies
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that have employed the hedonic approach
(Mendelsohn, Nordhaus, and Shaw 1994;
Schlenker, Hanemann, and Fisher 2005) rely
on cross-sectional variation across counties,
while Deschênes and Greenstone (2007), who
pioneered the panel approach, use both
county fixed effects and state-by-year fixed
effects such that parameters are identified
from the county-specific deviations in
weather from county averages after adjusting
for shocks common to all counties in a state.
We account for potential spatial correlation
in the error terms by using an OLS estimator
with nonparametric estimation of the
variance-covariance matrix for eist, developed
by Hsiang (2010).

The Impacts of Drought on Farm Income

We also estimate equations (2), (3), and (4)
using two measures of farm income—cash
receipts from marketings (net of the value of
inventory changes) and production
expenses—as our dependent variables. The
counties and years for which farm income
data are available are not the same as those
for crop yield data, so results from the farm
income regressions are not directly compara-
ble to the results from the crop yield regres-
sions. Other than the fact that they are
monetized outcomes, our farm income meas-
ures differ from our crop yield measures in
that the coefficient estimates may also in-
clude the effect of changes in local prices of
agricultural commodities due to scarcity that
results from droughts, which may increase
net farm income if yields and production
expenses are not significantly affected. As
with the crop yield regressions, our farm in-
come regressions are performed separately
for irrigated and dryland counties.

Results

Column 1 in table 3 reports results from the
estimation of equation (2) for dryland coun-
ties when the dependent variable is log corn
yields. The coefficient estimates are all nega-
tive and statistically significant, indicating
that additional weeks of drought in any sever-
ity category are associated with reduced corn
yields. The magnitude of this negative impact
is larger for additional weeks of drought in
higher severity categories and ranges from a
0.1% decrease in corn yields for an additional
week of D0 drought up to a 1.2% decrease in

corn yields for an additional week of D4
drought.

Column 2 of the same table reports results
from the estimation of equation (3) for corn
yield outcomes in dryland counties. This re-
gression serves as a check for consistency
with the existing literature, which has already
addressed the relationship between crop
yields and weather variables such as precipi-
tation and temperature. Consistent with these
existing studies, we find that degree days of
moderate heat are beneficial for crop yields,
but degree days of extreme heat are harmful
for yields. However, in our data, only the ex-
treme heat variable is statistically significant.
Like in previous studies, we find that precipi-
tation has a positive and statistically signifi-
cant relationship with yields, and the
quadratic term for precipitation is negative
and statistically significant. The magnitudes
of these estimated effects are similar to those
presented in studies that use the same tem-
perature and precipitation measures (Annan
and Schlenker 2015).

When drought and weather variables are
simultaneously included as explanatory varia-
bles for corn yield (equation (4)), the coeffi-
cient estimates for the number of weeks of
D2 and D3 drought remain negative and sig-
nificant (table 3, column 3). However, the
magnitudes of these coefficients are less than
half of the magnitudes estimated in the speci-
fication that only includes drought variables.
At the same time, the magnitude and signifi-
cance of the coefficients for the weather vari-
ables are similar to those estimated in the
weather-only regressions. We also note that
the R-squared statistic for the drought-plus-
weather specification is much closer to the
R-squared statistic in the weather-only speci-
fication than to the R-squared statistic in the
drought-only specification. Collectively, these
regression outcomes suggest that precipita-
tion and temperature explain most of the
observed variability in crop yields. While the
drought variables add little explanatory
power in the estimation of equation (4), the
statistically significant coefficients for D2 and
D3 drought do represent meaningful impacts;
that is, even after controlling for precipitation
and temperature, an additional week of D2
or D3 drought is associated with reductions
in corn yields of 0.3% to 0.5%. Furthermore,
a Wald test indicates that the five drought
variables are jointly significant at the 1%
level. These additional impacts captured by
the drought variables suggest that there are
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hydrologic and climatic factors other than
precipitation and temperature that may influ-
ence crop yields.

Columns 4, 5, and 6 in table 3 report results
from the estimation of equations (2), (3), and
(4) for corn yield in irrigated counties. As
would be expected, yields are less sensitive to
drought and weather in these irrigated counties
relative to the dryland counties. In the drought-
only specification (column 4), additional weeks
of drought are associated with negative impacts
on corn yield at every drought severity level ex-
cept for D1, but the magnitude of these impacts
is smaller than those estimated for dryland
counties, with reductions ranging from 0.1% to
0.5%. The weather-only specification (column
5) yields coefficient estimates for degree days
of moderate heat and extreme heat that are
negative and statistically significant, while the
relationships between the precipitation varia-
bles and corn yields are not statistically

significant. In the drought-plus-weather specifi-
cation (column 6), the coefficients on the
weather variables are very similar to those esti-
mated in the weather-only specification, and
the coefficients on the drought variables are
not statistically significant. These results suggest
that, once controlling for temperature and pre-
cipitation, the USDM contributes little to
explaining crop yields in irrigated counties.

Our regression results for soybean yields
are similar to those for corn yields in dryland
counties (columns 1, 2, and 3 in table 4).
Drought is associated with lower soybean
yields at every severity level, with negative
impacts for an additional week of drought
ranging from 0.2% to 0.8%. In the weather-
only regression, degree days of moderate
heat are associated with higher soybean
yields, and unlike the case for corn, this rela-
tionship is statistically significant. Degree
days of extreme heat are harmful for soybean

Table 3. Impact of Additional Weeks of Drought and Weather in Agricultural Areas on Log
Corn Yield

Dryland Counties Irrigated Counties

(1) (2) (3) (4) (5) (6)
Drought Weather Drought Drought Weather Drought
monitor only monitor & monitor only monitor &

only weather only weather

# weeks in D0 �0.00142c 8.37e-05 �0.000939b 0.000258
(0.000425) (0.000365) (0.000374) (0.000349)

# weeks in D1 �0.00318c �0.000441 �0.000394 0.000413
(0.000519) (0.000430) (0.000439) (0.000393)

# weeks in D2 �0.00622c �0.00284c �0.00135c 0.000229
(0.000735) (0.000572) (0.000395) (0.000381)

# weeks in D3 �0.0109c �0.00484c �0.00125b �0.000311
(0.00107) (0.000851) (0.000512) (0.000450)

# weeks in D4 �0.0119c �0.00166 �0.00485c �0.000953
(0.00205) (0.00140) (0.000940) (0.000822)

Moderate degree
days (thousands)

0.0724 0.0926 �0.109a �0.110a

(0.0570) (0.0566) (0.0569) (0.0574)
Extreme degree

days (hundreds)
�0.571c �0.534c �0.205c �0.203c

(0.0227) (0.0230) (0.0169) (0.0170)
Precipitation (meters) 0.635c 0.572c �0.0867 �0.0917

(0.124) (0.122) (0.110) (0.110)
Precipitation squared �0.408c �0.381c 0.0613 0.0672

(0.0872) (0.0862) (0.0831) (0.0828)
Constant 4.365c 4.420c 4.378c 4.481c 4.939c 4.931c

(0.100) (0.174) (0.172) (0.0751) (0.161) (0.162)
Observations 17,182 17,182 17,182 5,061 5,061 5,061
R2 within 0.3043 0.4525 0.4618 0.1936 0.2801 0.2815
R2 between 0.0525 0.2937 0.3074 0.0043 0.0000 0.0001
R2 overall 0.1459 0.3273 0.3471 0.0086 0.0268 0.0281

Note: Independent variables included in each specification are labeled in the second row. Standard errors account for potential spatial correlation in the error

terms and appear in parentheses. All models include county and year fixed effects and state-specific linear time trends. All drought variables are weighted by

the percentage of county agricultural area affected. Significance is denoted as follows: a¼ 10% level, b¼ 5% level, and c¼ 1% level.
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yields, and this negative effect is an order of
magnitude larger than the beneficial effect of
moderate heat degree days, which is consis-
tent with previous literature. In addition, co-
efficient estimates for both the linear and
quadratic precipitation terms are statistically
significant and indicate an inverted U-shape
relationship with soybean yields. As with
corn yields, when drought variables are
added to the weather variables as explana-
tory variables in the soybean regression, the
magnitudes of the coefficient estimates for
the weather variables are similar to those es-
timated in the weather-only regression, and
coefficients for some of the drought variables
remain statistically significant. A Wald test
indicates that the five drought variables are
jointly significant at the 1% level for soybean
yields in dryland counties.

In irrigated counties (columns 4, 5, and 6 in
table 4), soy yields are less sensitive to

drought and weather variables relative to
dryland counties (as was the case with corn
yields). In the drought-only specification,
negative impacts for an additional week of
drought range from 0.2% to 0.4%, while in
the weather-only specification, the coefficients
for the precipitation and temperature variables
are half the magnitudes of those estimated for
dryland counties. We struggle to find an intui-
tive explanation for the positive and significant
effect of additional weeks of D4 drought in the
drought-plus-weather specifications for both ir-
rigated and dryland counties.

Table 5 reports results from our three econo-
metric specifications, for dryland and irrigated
counties, using the log of cash receipts per acre
from marketings plus the value of inventory
change per acre as the dependent variable.
Table 6 reports results from these same specifi-
cations using the log of production expenses
per acre as the dependent variable. We find

Table 4. Impact of Additional Weeks of Drought and Weather in Agricultural Areas on Log
Soy Yield

Dryland Counties Irrigated Counties

(1) (2) (3) (4) (5) (6)
Drought Weather Drought Drought Weather Drought
monitor only monitor & monitor only monitor &

only weather only weather

# weeks in D0 �0.00184c �0.000119 �0.000127 0.00143b

(0.000446) (0.000375) (0.000628) (0.000574)
# weeks in D1 �0.00602c �0.00266c �0.00216c �0.000498

(0.000561) (0.000449) (0.000713) (0.000657)
# weeks in D2 �0.00591c �0.00183c �0.00292c �0.00117a

(0.000683) (0.000526) (0.000725) (0.000702)
# weeks in D3 �0.00862c �0.00183b �0.00410c �0.00200c

(0.00109) (0.000774) (0.000771) (0.000696)
# weeks in D4 �0.00657b 0.00357b �0.000768 0.00349c

(0.00288) (0.00182) (0.00129) (0.00112)
Moderate degree

days (thousands)
0.409c 0.418c 0.290c 0.241b

(0.0576) (0.0577) (0.0943) (0.0939)
Extreme degree

days (hundreds)
�0.696c �0.670c �0.300c �0.288c

(0.0235) (0.0234) (0.0308) (0.0307)
Precipitation (meters) 1.490c 1.444c 0.645c 0.682c

(0.114) (0.115) (0.178) (0.173)
Precipitation squared �0.884c �0.872c �0.345c �0.382c

(0.0793) (0.0789) (0.130) (0.127)
Constant 3.108c 1.925c 1.928c 3.625c 2.785c 2.876c

(0.157) (0.170) (0.173) (0.215) (0.311) (0.309)
Observations 15,366 15,366 15,366 3,391 3,391 3,391
R2 within 0.2408 0.4732 0.4816 0.1851 0.2863 0.2974
R2 between 0.0998 0.202 0.2049 0.0044 0.1078 0.0887
R2 overall 0.1683 0.2896 0.2972 0.0122 0.0205 0.0107

Note: Independent variables included in each specification are labeled in the second row. Standard errors account for potential spatial correlation in the error

terms and appear in parentheses. All models include county and year fixed effects and state-specific linear time trends. All drought variables are weighted by

the percentage of county agricultural area affected. Significance is denoted as follows: a¼ 10% level, b¼ 5% level, and c¼ 1% level.
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that the relationships between drought,
weather, and these farm income measures are
much less clear than the relationship between
drought, weather, and crop yields, with a gen-
eral lack of statistical significance across coeffi-
cient estimates, especially in irrigated counties.
In dryland counties, additional weeks of D3
drought are associated with a decrease in cash
receipts and additional weeks of D0 and D2
drought are associated with increases in pro-
duction expenses, but the magnitudes of these
effects are very small.

The lack of statistically significant responses
of farm income measures to drought and
weather may be due to the fact that farmers
are more able to curtail the impacts of drought
on farm income than on yield. This is likely to
be the case if local scarcity of agricultural out-
puts caused by drought raises prices received
by farmers.8 Our measures of farm income—

cash receipts from marketings and production
expenses—exclude payments from crop insur-
ance and drought disaster assistance programs
that may become available to farmers during
drought episodes. However, depending on the
timing of these payments, farmers may be able
to use income from these payments to adjust
their on-farm practices in order to offset the
negative impacts of drought on crop yields.
We also note that our farm income results rely

Table 5. Impact of Additional Weeks of Drought and Weather in Agricultural Areas on
Farm Income (Log Cash Receipts from Marketings Plus Value of Inventory Change / Farm
Acres)

Dryland Counties Irrigated Counties

(1) (2) (3) (4) (5) (6)
Drought Weather Drought Drought Weather Drought
monitor only monitor & monitor only monitor &

only weather only weather

# weeks in D0 0.000253 0.000292 �0.000419 �0.000179
(0.000215) (0.000228) (0.000393) (0.000379)

# weeks in D1 6.21e-05 0.000179 6.76e-05 8.98e-05
(0.000216) (0.000228) (0.000292) (0.000330)

# weeks in D2 0.000318 0.000322 �0.000142 0.000246
(0.000280) (0.000281) (0.000323) (0.000350)

# weeks in D3 �0.00104c �0.000916c 0.000221 0.000372
(0.000313) (0.000318) (0.000343) (0.000337)

# weeks in D4 �0.000288 0.000313 �0.000575 6.89e-05
(0.000480) (0.000527) (0.000558) (0.000616)

Moderate degree
days (thousands)

0.0564 0.0485 �0.134c �0.150b

(0.0360) (0.0348) (0.0512) (0.0587)
Extreme degree

days (hundreds)
�0.0283c �0.0258c �0.00746 �0.00657
(0.00702) (0.00691) (0.0103) (0.0101)

Precipitation (meters) 0.0132 0.00405 �0.00832 �0.00733
(0.0430) (0.0437) (0.0773) (0.0803)

Precipitation squared �0.0189 �0.00951 �0.0400 �0.0386
(0.0328) (0.0328) (0.0656) (0.0686)

Constant 0.105c 0.00434 0.0123 0.268c 0.616c 0.662c

(0.0298) (0.0932) (0.0902) (0.0222) (0.125) (0.141)
Observations 6,078 6,078 6,078 2,598 2,598 2,598
R2 within 0.5079 0.5078 0.5101 0.2918 0.2964 0.2972
R2 between 0.0757 0.0758 0.0804 0.0108 0.0248 0.0242
R2 overall 0.1145 0.1148 0.1192 0.0001 0.0059 0.0064

Note: Independent variables included in each specification are labeled in the second row. Standard errors account for potential spatial correlation in the error

terms and appear in parentheses. All models include county and year fixed effects and state-specific linear time trends. All drought variables are weighted by

the percentage of county agricultural area affected. Significance is denoted as follows: a¼ 10% level, b¼ 5% level, and c¼ 1% level.

8 We are unable to conduct a sub-analysis of the relationship
between drought and the price of agricultural commodities at the
same level of detail as the rest of our analysis because price data
are only available to us at the state level. Regressions using state-
level prices of corn and soybeans as dependent variables and
drought variables aggregated to the state level as independent
variables result in positive and significant effects of drought on
corn and soybean prices for D4 drought only, and these coeffi-
cient estimates become insignificant once year dummies are in-
cluded in the specifications.
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on only 3 years of data (from 2002, 2007, and
2012), in contrast to the 13 years of data that
are available for crop yields. It is possible that
the small number of years used in our farm in-
come regressions are not representative of
year-to-year fluctuations in farm income due
to coincident changes in agricultural policy,
the ethanol boom and corresponding increases
in crop prices, and the 2012 Midwest drought.

Finally, we estimated equation (2) for corn
and soybean yields in dryland and irrigated
counties in six different regions of the United
States: High Plains, Midwest, Northeast, South,
and Southeast.9 We find that the expected neg-
ative relationship between drought and crop
yields is consistently observed in dryland coun-
ties in the High Plains, Midwest, and South
regions but less so in the other two regions.

Impacts are particularly large in dryland coun-
ties in the Midwest, where an additional week
of D4 drought is associated with an 8.0% de-
crease in corn yields and a 3.1% decrease in
soybean yields. These regional results suggest
that the USDM may be more useful for identi-
fying communities affected by drought in the
High Plains, Midwest, and South. Our results
also suggest that drought disaster assistance
programs that apply the same eligibility criteria
for all regions using USDM categorizations
(e.g., a county must have experienced D3 or
D4 drought for at least eight consecutive
weeks) may not target the farmers who are
most vulnerable to drought.

Conclusion

Despite growing interest within the research
and policy communities, few studies quantify
the effect of drought on agricultural outcomes

Table 6. Impact of Additional Weeks of Drought and Weather in Agricultural Areas on
Production Expenses (Log Production Expenses/Farm Acres)

Dryland Counties Irrigated Counties

(1) (2) (3) (4) (5) (6)
Drought Weather Drought Drought Weather Drought
monitor only monitor & monitor only monitor &

only weather only weather

# weeks in D0 0.000534c 0.000636c 2.41e-06 9.46e-05
(0.000189) (0.000198) (0.000367) (0.000348)

# weeks in D1 �0.000244 �8.91e-05 0.000210 �2.22e-06
(0.000191) (0.000199) (0.000269) (0.000282)

# weeks in D2 0.000429a 0.000565b 0.000177 0.000436
(0.000240) (0.000240) (0.000299) (0.000313)

# weeks in D3 �0.000339 �0.000238 0.000224 0.000283
(0.000282) (0.000283) (0.000322) (0.000312)

# weeks in D4 �6.06e-05 0.000188 �0.000233 0.000132
(0.000499) (0.000526) (0.000513) (0.000590)

Moderate degree
days (thousands)

�0.0980c �0.113c �0.103b �0.124b

(0.0311) (0.0302) (0.0480) (0.0552)
Extreme degree

days (hundreds)
0.00408 0.00703 �0.00204 �0.00172

(0.00603) (0.00606) (0.00951) (0.00927)
Precipitation (meters) �0.0187 �0.0202 0.0332 0.0337

(0.0414) (0.0413) (0.0617) (0.0632)
Precipitation squared 0.0152 0.0227 �0.0926a �0.0912a

(0.0308) (0.0305) (0.0505) (0.0521)
Constant 0.0846b 0.342c 0.363c 0.240c 0.517c 0.566c

(0.0843) (0.0333) (0.0811) (0.0149) (0.112) (0.129)
Observations 6,078 6,078 6,078 2,598 2,598 2,598
R2 within 0.4959 0.4956 0.498 0.2295 0.2388 0.2396
R2 between 0.0771 0.0538 0.0533 0.0111 0.0249 0.0219
R2 overall 0.1116 0.0884 0.0874 0.0000 0.0054 0.0056

Note: Independent variables included in each specification are labeled in the second row. Standard errors account for potential spatial correlation in the error

terms and appear in parentheses. All models include county and year fixed effects and state-specific linear time trends. All drought variables are weighted by

the percentage of county agricultural area affected. Significance is denoted as follows: a¼ 10% level, b¼ 5% level, and c¼ 1% level.

9 We omit the western region of the United States from our anal-
ysis due to a lack of crop yield data from counties in this region.
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in the United States. In this paper, we estimated
the impacts of drought, as defined by the
USDM, on crop yields and farm income. We
find negative and statistically significant effects
of drought on crop yields in the average county,
equal to yield reductions in the range of 0.1% to
1.2% for corn and soybean yields for each addi-
tional week of drought in dryland counties, and
0.1% to 0.5% in irrigated counties. However,
region-specific outcomes vary, with some
regions experiencing no yield impacts from
drought, while we observe yield reductions as
high as 8.0% in dryland counties in the Midwest
for every week of drought in the highest severity
category. Despite this impact on crop yields, we
find that additional weeks of drought have little
to no effect on measures of farm income.

Using regression specifications that include
weather variables in addition to drought vari-
ables, we find that precipitation and tempera-
ture explain most of the observed variability
in crop yields. However, additional weeks of
drought in certain severity categories are as-
sociated with negative and statistically signifi-
cant impacts on crop yields even after
controlling for precipitation and temperature.
This finding suggests that the USDM contains
information regarding impacts on crop
yields above and beyond what can be drawn
from observing only temperature and precipi-
tation, and serves as evidence to support the
official use of the USDM as a complement to
weather information for making resource al-
location decisions within government drought
disaster assistance programs. At the same
time, our analysis suggests that the USDM
may be more helpful for identifying drought
impacts in some regions of the United States
and less so in others. In particular, we find
that the USDM is more correlated with crop
yield outcomes in dryland counties than in ir-
rigated counties, and is more correlated with
crop yield in the High Plains, Midwest, and
South than in the Northeast and Southeast.

Our analysis focused specifically on the ef-
fect of additional weeks of drought on crop
yields and components of farm income, but our
USDM-based framework can be used to esti-
mate other types of relationships between
droughts and agriculture. For example, our
econometric approach could be used to esti-
mate the effects of droughts with a longer dura-
tion; such an analysis may help policymakers
choose the appropriate number of weeks that
counties need to be in drought, as categorized
by the USDM, before being eligible for
drought disaster assistance. More generally,

our framework can help policymakers form di-
rect links between the provision of drought di-
saster assistance and the economic impacts that
these programs seek to mitigate.

Building on our results, there are several
ways in which future work could delve deeper
into the impacts of drought on agriculture. For
example, there is evidence that crop production
is affected not only by the intensity and dura-
tion of a drought, but also its timing with re-
spect to the growing season (Walthall et al.
2012). Future work could examine whether
drought categorizations are particularly harm-
ful during certain parts of the calendar year, al-
though this would require careful consideration
of the econometric approach as effects are
likely to be heterogeneous across regions and
crop types. In addition, future work could quan-
tify the degree to which on-farm practices, crop
insurance programs, and disaster assistance pol-
icies affect observed agricultural outcomes in
the presence of drought.

Supplementary Material

Supplementary material are available at
American Journal of Agricultural Economics
online.
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Francia, C. Marè, A. Tondelli, and A.M.
Stanca. 2008. Drought Tolerance
Improvement in Crop Plants: An
Integrated View from Breeding to
Genomics. Field Crops Research 105 (1–
2): 1–14.

208 January 2019 Amer. J. Agr. Econ.

D
ow

nloaded from
 https://academ

ic.oup.com
/ajae/article-abstract/101/1/193/5051676 by St Petersburg State U

niversity user on 19 July 2020

https://academic.oup.com/ajae/article-lookup/doi/10.1093/ajae/aay037#supplementary-data


Cavatassi, R., L. Lipper, and U. Narloch.
2011. Modern Variety Adoption and
Risk Management in Drought Prone
Areas: Insights from the Sorghum
Farmers of Eastern Ethiopia.
Agricultural Economics 42 (3): 279–92.

Ciais, P., M. Reichstein, N. Viovy, A.
Granier, J. Og�ee, V. Allard, M. Aubinet,
et al. 2005. Europe-Wide Reduction in
Primary Productivity Caused by the Heat
and Drought in 2003. Nature 437 (22):
529–33.

Climate Change Science Program. 2008. The
Effects of Climate Change on Agriculture,
Land Resources, Water Resources, and
Biodiversity in the United States.
Washington DC: U.S. Department of
Agriculture.

Craine, J.M., T.W. Ocheltree, J.B. Nippert,
E.G. Towne, A.M. Skibbe, S.W. Kembel,
and J.E. Fargione. 2013. Global Diversity
of Drought Tolerance and Grassland
Climate-Change Resilience. Nature
Climate Change 3 (1): 63–7.
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