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Abstract. Climate warming has been implicated as a major
driver of recent catastrophic wildfires worldwide but analy-
ses of regional differences in US wildfires show that socioe-
conomic factors also play a large role. We previously lever-
aged statistical projections of annual areas burned (AAB)
over the fast-growing southeastern US that include both cli-
mate and socioeconomic changes from 2011 to 2060 and
developed wildfire emissions estimates over the region at
12 km× 12 km resolution to enable air quality (AQ) impact
assessments for 2010 and selected future years. These es-
timates employed two AAB datasets, one using statistical
downscaling (“statistical d-s”) and another using dynamical
downscaling (“dynamical d-s”) of climate inputs from the
same climate realization. This paper evaluates these wildfire
emissions estimates against the U.S. National Emissions In-
ventory (NEI) as a benchmark in contemporary (2010) simu-
lations with the Community Multiscale Air Quality (CMAQ)
model and against network observations for ozone and par-
ticulate matter below 2.5 µm in diameter (PM2.5). We hy-
pothesize that our emissions estimates will yield model re-
sults that meet acceptable performance criteria and are com-
parable to those using the NEI. The three simulations, which
differ only in wildfire emissions, compare closely, with dif-
ferences in ozone and PM2.5 below 1 % and 8 %, respec-
tively, but have much larger maximum mean fractional biases
(MFBs) against observations (25 % and 51 %, respectively).
The largest biases for ozone are in the fire-free winter, indi-

cating that modeling uncertainties other than wildfire emis-
sions are mainly responsible. Statistical d-s, with the largest
AAB domain-wide, is 7 % more positively biased and 4 %
less negatively biased in PM2.5 on average than the other
two cases, while dynamical d-s and the NEI differ only by
2 %–3 % partly because of their equally large summertime
PM2.5 underpredictions. Primary species (elemental carbon
and ammonium from ammonia) have good-to-acceptable re-
sults, especially for the downscaling cases, providing confi-
dence in our emissions estimation methodology. Compensat-
ing biases in sulfate (positive) and in organic carbon and dust
(negative) lead to acceptable PM2.5 performance to varying
degrees (MFB between −14 % and 51 %) in all simulations.
As these species are driven by secondary chemistry or non-
wildfire sources, their production pathways can be fruitful
avenues for CMAQ improvements. Overall, the downscaling
methods match and sometimes exceed the NEI in simulat-
ing current wildfire AQ impacts, while enabling such assess-
ments much farther into the future.

1 Introduction

Wildfires can have catastrophic impacts on air quality and
health in the United States and around the world. At the
time of writing, the death toll from the Camp Fire that de-
stroyed the town of Paradise, California, in November 2018
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was still mounting. Earlier, in the summer of 2018, catas-
trophic wildfires in Sweden required international aid for
their mitigation, while Mendocino county in northern Cali-
fornia saw the largest wildfire in that state’s history. In Oc-
tober 2017, multiple wildfires in northern California burned
850 km2 of a fragile ecoregion, causing at least 44 fatali-
ties and nearly 200 hospitalizations. Only 2 months later,
the Thomas Fire in Ventura County in southern California
burned more than 300 km2 in its first week alone, with a
total area burned exceeding 1100 km2. These events under-
score the human, economic, and environmental toll of large
wildfires. In addition to damaging human and wildlife com-
munities, structures, and ecosystems sensitive to disturbance,
wildfires can also have adverse health consequences for vul-
nerable populations through exposure to the emitted pollu-
tants, notably particulate matter (PM) below 2.5 µm in diam-
eter, denoted as PM2.5, and ozone. In a study of the health im-
pacts of wildfires over the northwestern and southeastern US,
Fann et al. (2018) estimated the economic impacts of wild-
fires in the form of additional premature deaths and hospital
admissions between 2008 and 2012 to be USD 11 billion–
20 billion (in 2010 values) per year. In the southeastern US,
the economically disadvantaged populations in rural areas
are most vulnerable to these health impacts, due to limited
resources for preventive healthcare and wildfire mitigation
(Gaither et al., 2011; Rappold et al., 2011, 2012, 2014).
In their study of the Pocosin Lakes peat bog fire in east-
ern North Carolina in 2008, Rappold et al. (2014) estimated
the long-term healthcare costs of the fire at ∼USD 48 mil-
lion, far in excess of their estimates for short-term exposure
(∼USD 1 million).

Climate change leading to prolonged droughts that affect
soil and fuel conditions has been implicated as a driver in
many western wildfires (Dennison et al., 2014; Stavros et al.,
2014; Abatzoglou and Williams, 2016). Statistical analysis of
nearly a century of wildfires in 19 ecoprovinces in the west-
ern US (Littell et al., 2009, 2018) found that climate vari-
ables (precipitation, temperature and drought severity) were
able to explain up to 94 % of the variability in annual areas
burned (AAB). In a climate-limited ecosystem (no limita-
tion due to fuel availability), the current fire season’s climate
was the biggest driver of wildfires in a given year (Littell et
al., 2009, 2018). In analyses of regional climate model pre-
dictions over the continental US from 2000 to 2070, Liu et
al. (2013) also projected increases in the length of the wild-
fire season by mid-century and found increasing tempera-
tures to be the main driver of increasing fire potential, out-
weighing the mitigating effects of increases in precipitation
in some regions.

Wildfire occurrences vary widely geographically in re-
sponse not only to these climate drivers but also to hu-
man factors (Prestemon et al., 2002; Mercer and Prestemon,
2005; Syphard et al., 2017). Humans both ignite and sup-
press the majority of wildfires, especially in the southeastern
US (Prestemon et al., 2013; Balch et al., 2017). Analyses by

Syphard et al. (2017) of over 37 regions across the continen-
tal US suggest that human populations and climate may play
complementary roles in determining the spatial patterns of
wildfire in the southeastern US, currently considered among
the fastest-growing regions in the country (U.S. Census Bu-
reau, 2018). Fire regimes in the southeastern US may be re-
sponding to both a changing climate and population shifts.
Thus, there is a critical need in southeastern land and air qual-
ity management to consider both these drivers to plan effec-
tively for protecting the public and the environment. This has
motivated the recent development of methodologies that in-
clude these drivers in projections of wildfire activity (Preste-
mon et al., 2016) from the present to 2060, and their use in
assessing not only current but also future air quality (Shankar
et al., 2018).

Prestemon et al. (2016) estimated annual areas burned
(AAB) over 13 states in the southeastern US using county-
level projections of climate, population, and income, and
land use based on the Intergovernmental Panel on Cli-
mate Change emissions scenarios (Nakicenovic and Stew-
ard, 2000). Their projected AAB show a small increase (4 %)
from 2011 to 2060 due to the combined influences of these
climate and socioeconomic factors. Shankar et al. (2018)
leveraged these AAB projections to estimate wildfire emis-
sions over a southeastern modeling grid at 12 km× 12 km
spatial resolution suitable for air quality impact assessments
and projected daily wildfire emissions in selected years from
2011 to 2060. Shankar et al. (2018) also compared their wild-
fire emissions projections to those using 19-year historical
mean AAB and found them to be lower (by 13 %–62 %) than
those based on the historical AAB due to the offsetting in-
fluences of socioeconomics, which decreased AAB, and cli-
mate variability, which increased or decreased AAB, in the
selected years.

Various methods are available to derive the climate in-
puts for the AAB estimation models that provide the basis
of these regional-scale wildfire emissions projections. Preste-
mon et al. (2016) used statistically downscaled outputs of
nine general circulation model (GCM) realizations to pro-
vide the needed meteorological inputs at a fine spatial reso-
lution (12 km× 12 km) for their statistical model estimates
of AAB at the county level. These meteorological inputs,
however, do not include all the variables needed for an air
quality simulation or the available variables at the tempo-
ral resolution (hourly) needed for such simulations (Shankar
et al., 2018). Thus, the use of AAB estimated with statisti-
cally downscaled climate inputs in air quality studies requires
additional mesoscale meteorological modeling. An alterna-
tive approach is to use a mesoscale meteorological model to
downscale these climate variables dynamically from one or
more GCMs to start with. This provides the spatial resolu-
tion needed to project the AAB, along with a higher tem-
poral resolution of all the prognostic meteorological vari-
ables needed in air quality modeling, in addition to those
used in Prestemon et al. (2016), which are monthly average
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daily maximum and minimum temperature, monthly average
potential evapotranspiration, and monthly average precipita-
tion. This allows for a consistent set of inputs from AAB
estimates to air quality simulations. An evaluation of both
methods, through air quality simulations and a comparison of
the modeled air quality against observations, would provide
insights into how well (or poorly) these projection methods
represent real-world conditions, their effects on the modeled
fire emissions, and their air quality impacts. Retrospective
model performance evaluations have a long history of use
in atmospheric modeling (see, e.g., Fox, 1981; Appel et al.,
2007, 2008; Wong et al., 2012; Katragkou et al., 2015). They
are critical for evaluating models used for predictive applica-
tions and for establishing the baseline against which future
modeled trends can be compared. Issues to be considered in
evaluating the performance of a model or modeling system
have been reviewed by several authors (see, e.g., Chang and
Hanna, 2004; Dennis et al., 2010; McKenzie et al., 2014, and
references therein).

In this study, we examine the model performance of ret-
rospective air quality (AQ) simulations using wildfire emis-
sions (Shankar et al., 2018) that are a function of changes in
climate and socioeconomic factors, with both the statistical
and the dynamical climate downscaling methods for the un-
derlying AAB estimates. We compare the AQ model results
using these two emissions estimates to those with a stan-
dard wildfire inventory compiled from observed daily fire
activity without considering changes in climate and socioe-
conomic factors. The performance of all three wildfire emis-
sions methods is also evaluated by comparing these model re-
sults to ground-based air quality observations for 2010. This
year was chosen for the retrospective evaluation because it
provided the latest historical year of AAB that was used by
Prestemon et al. (2016) to calibrate their statistical AAB pro-
jection models. Thus, the choice of this year both ensured
the robustness of the underlying AAB data used in the wild-
fire emissions estimates and allowed the use of reliable and
relatively recent emissions inventories for the non-wildfire
sectors in the AQ simulations.

Our evaluations compare selected outputs from the AQ
models for ozone and speciated PM2.5 to observations from
long-term monitoring networks, seasonally and spatially
across the southeastern US. If results based on our emissions
modeling or the standard inventory show systematic depar-
tures or bias with respect to the observations, it will provide
critical feedback for improvements in national emissions in-
ventories and modeling techniques designed for future AQ
projections. For example, if the wet bias in our dynamical
downscaling (Shankar et al., 2018) were to persist into pre-
dictions of ozone and PM2.5, it would signal the need for
re-evaluation of the mesoscale meteorological model’s use-
fulness for projecting air quality changes from wildfire. Sim-
ilarly, if model output based on the standard inventory de-
parts significantly from observations, it might suggest spe-
cific changes in some of the many assumptions that go into

national wildfire emissions inventories (see, e.g., Pouliot et
al., 2008). Based on our initial analyses of our wildfire emis-
sions projection methods (Shankar et al., 2018), we hypoth-
esize that they will yield results within published criteria
(Boylan and Russell, 2006; Emery et al., 2017) for acceptable
AQ model performance with respect to observations and that
their predictions will closely match those using the bench-
mark inventory for the historical period.

2 Methods

Predictions of ozone and PM2.5 were generated for 2010 us-
ing version 5.0.2 of the Community Multiscale Air Quality
model (CMAQ – Byun and Schere, 2006) using emissions
estimates from each of the two wildfire projection methods
of Shankar et al. (2018), in combination with emissions from
other sectors. We compared the AQ model results for these
two cases with those using the National Emissions Inventory
(NEI) compiled and distributed by the U.S. Environmental
Protection Agency (EPA) and also against AQ network ob-
servations.

2.1 Emissions inventories

We used two projected wildfire emission inventories from
Shankar et al. (2018), and one from 2010 compiled by the
EPA, hereafter “NEI benchmark”; we highlight the main
features of this previous work here. The projected inven-
tories were developed using AAB estimated by the statis-
tical models of Prestemon et al. (2016) with input meteo-
rological variables either from (a) statistically interpolated
output of a GCM (hereafter “statistical d-s”) or (b) dynam-
ically downscaled from a GCM using a mesoscale meteo-
rological model (hereafter “dynamical d-s”). Regardless of
the climate downscaling method used to project AAB, the
distinguishing feature of our emissions projection methods
compared to the NEI (and other empirical inventories) is that
they can estimate future-year wildfire emissions based on ex-
pected county-level changes in climate and socioeconomics
built into the underlying AAB estimates.

The statistical d-s AAB were based on output from a re-
alization of the Canadian General Circulation Model ver-
sion 3.1 (CGCM31 – Gachon et al., 2008) using the A2
greenhouse gas (GHG) emissions scenario (Nakicenovic and
Steward, 2000) characterized by moderate economic growth
and high population growth. Selected outputs from this cli-
mate model realization were statistically downscaled follow-
ing Daly et al. (2002) over the southeastern US (domain D02
in Fig. 1) at 5′× 5′ resolution to provide the meteorological
inputs required for the AAB projections (Joyce et al., 2014).
These included maximum and minimum daily temperature,
monthly cumulative precipitation, and potential evapotran-
spiration. These data were then remapped to a 12 km× 12 km
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Figure 1. Modeling domains for the meteorological model: D01 at
50 km× 50 km grid spacing and D02 at 12 km× 12 km grid spac-
ing.

grid over the D02 domain and aggregated or averaged to the
required monthly values.

Meteorological inputs for the dynamical d-s AAB esti-
mates were provided by the Weather Research and Forecast-
ing model (WRF – Skamarock et al., 2008) over domain D02.
This involved the use of WRFG (WRF with an improved
scheme for convective parameters – Grell and Devenyi,
2002) model outputs archived in the North American Climate
Change Assessment Program (NARCCAP – Mearns et al.,
2009) database for the D01 domain (Fig. 1) at 50 km× 50 km
spatial resolution from the dynamic downscaling of a CGCM
version 3.0 (Flato, 2005; Jeong et al., 2012) realization, with
the same A2 scenario for GHG emissions as in the previous
case. These D01 WRFG outputs were used at the boundaries
of domain D02 for a WRF version 3.4.1 simulation using its
nest-down feature at 12 km× 12 km resolution to calculate
the meteorological inputs needed for the AAB estimates. The
model differences between WRFG and WRF version 3.4.1
and their implications for the dynamical d-s wildfire emis-
sions inventory are discussed in Shankar et al. (2018).

Each set of AAB estimated as described in Prestemon et
al. (2016) and (Shankar et al., 2018) was used to calculate
daily wildfire emissions with the BlueSky/CONSUME fire
consumptions and emissions model (Larkin et al., 2009). A
critical step in this process is the disaggregation of the AAB
estimates into daily fire activity with a daily metric of ig-
nition probability, the fire weather index (FWI – Stavros et
al., 2014), using the Fire Scenario Builder (McKenzie et al.,
2006). Due to the finer (daily) temporal resolution of the me-
teorological data needed to calculate the FWI than is avail-
able from statistical downscaling, the same WRF model out-
puts were used to disaggregate the AAB to daily area burned
for both statistical d-s and dynamical d-s (Shankar et al.,
2018).

As a baseline inventory, the 2010 NEI for wildfire emis-
sions draws on a variety of data sources, including fire
counts, i.e., fire pixels at 1 km2 resolution, from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) on
board the Aqua and Terra satellites, available in the Na-
tional Oceanic and Atmospheric Administration’s Hazard
Mapping System. These are matched in the SMARTFIRE
system (SMARTFIRE – Raffuse et al., 2009; Pouliot et al.,
2012) to ground-based wildfire activity data reported in In-
cident Status Summary (denoted as ICS 209) reports by the
National Interagency Fire Center. The daily areas burned es-
timated by SMARTFIRE are input to the Fire Emissions Pro-
cessing System (FEPS) in BlueSky (Larkin et al., 2009) to
estimate daily point wildfire emissions for the NEI (Pouliot
et al., 2008). Being an empirical inventory, the NEI does not
include changes in climate and socioeconomic variables and
is intended for use in AQ simulations close to the time period
of the inventory data.

Each of the three wildfire inventories was processed in
the Sparse Matrix Operator Kernel Emissions (SMOKE) pro-
cessing system (Houyoux et al., 2000; Baek and Seppanen,
2018) to provide the necessary spatiotemporal wildfire emis-
sion magnitudes for the respective AQ simulation, which
were then vertically allocated inline by the AQ model. The
diurnal profiles and fire emissions speciation for PM used in
the NEI benchmark inventory were also applied in process-
ing the other two inventories, to avoid any artifacts from them
in the inventory comparisons. Emissions for all other source
sectors were provided by the EPA’s 2005 NEI for all three
cases. Table 1 summarizes these details.

2.2 Air quality simulations

The CMAQ v5.0.2 model simulations for the 2010 evalua-
tion study were performed over the southeastern US domain
shown in Fig. 1 (D02) at a 12 km× 12 km horizontal grid
spacing. Representative hourly chemical boundary inputs at
the lateral boundaries of the domain were extracted from
an annual simulation for the conterminous US (CONUS)
at 36 km× 36 km grid spacing (Vennam et al., 2014) for
all three simulations. All simulations also used the same
aerosol- and gas-phase chemical mechanisms. The carbon
bond 05 gas-phase mechanism (cb05tucl) used in our simu-
lations includes updates to toluene chemistry, homogeneous
hydrolysis rate constants for N2O5, and updates to the chlo-
rine chemistry (Sarwar et al., 2011; Whitten et al., 2010).
The aerosol mechanism, AERO6, includes a primary or-
ganic aerosol aging scheme (Simon and Bhave, 2012) and
an improved representation of fugitive dust; primary speci-
ated emissions needed to model dust are based on Reff et
al. (2009).
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Table 1. Summary of cases simulated in modeling study.

Case name Wildfire inventory method Other

Annual fire activity estimates Daily fire activity Emissions sector
Estimates emissions

NEI benchmark Empirical annual totals derived from the aggregation of
acres burned in individual fire events.

2010 MODIS fire counts
matched to ground-based
reports of areas burned
per fire event using
SMARTFIRE21

BlueSky/
CONSUME2.

NEI 2005

Statistical d-s Meteorological inputs for the annual area burned
(AAB) estimation model3 obtained from a Canadian
General Circulation Model version 3.1 (CGCM31)/A2
greenhouse gas emissions scenario realization, statis-
tically downscaled over the southeastern domain at
12 km× 12 km resolution. County-level population, in-
come, and land-use inputs to the AAB estimation from
census tracts and historical land-use records.

Disaggregated from AAB
by the Fire Scenario
Builder (FSB)4 using WRF
meteorology

BlueSky/
CONSUME

NEI 2005

Dynamical d-s Meteorological inputs for the AAB estimation model
obtained from a simulation of the Weather Research and
Forecasting (WRF) model version 3.4.1 for the south-
eastern domain at 12 km× 12 km resolution, which is
nested down from a WRF simulation over North Amer-
ica dynamically downscaled from a CGCM3/A2 sce-
nario realization5. County-level population, income,
and land-use inputs to the AAB estimation are from
census tracts and historical land-use records.

Disaggregated from AAB
by the FSB, using WRF
meteorology

BlueSky/
CONSUME

NEI 2005

N.B: With the exception of the wildfire emissions, all CMAQ simulations were performed for the southeastern domain (denoted D02 in Fig. 1) at 12 km× 12 km grid spacing using
identical meteorological, boundary, and other inputs and model configurations. 1 Pouliot et al. (2008). 2 Larkin et al. (2009). 3 Prestemon et al. (2016). 4 McKenzie et al. (2006).
5 Mearns et al. (2009).

2.3 Observational networks

Observations for ozone and speciated PM2.5 for 2010 were
extracted from three long-term monitoring networks: the Air
Quality System (AQS – https://www.epa.gov/aqs, last ac-
cess: 25 November 2019), a national network of over 1000
sites maintained by the EPA; the Interagency Monitoring of
PROtected Visual Environments (IMPROVE – Sisler et al.,
1993), a network of mostly rural sites concentrated in the
western half of the US, and the EPA’s Chemical Speciation
Network (CSN – https://www3.epa.gov/ttnamti1/speciepg.
html, last access: 25 November 2019) of mostly urban sites.
AQS consolidates and distributes data on samples taken at
hourly and daily intervals. The IMPROVE and CSN obser-
vations are for two 24 h periods per week, with many colo-
cated sites so that they provide observations of rural vs. urban
air sheds in close proximity. We also compared simulation
results to available observations of hourly ozone and daily
averaged speciated PM from the Southeast Aerosol Research
and Characterization (SEARCH – Blanchard et al., 2013, and
references therein) network for the continuous monitoring of
particulate matter (PM) over a limited set of eight sites in the
southeastern US.

2.4 Model evaluation tools and data

The Atmospheric Model Evaluation Tool (AMET – Appel
et al., 2011) was used to compare the modeled cases against
each other and against the network observations, using mean
fractional error (MFE), mean fractional bias (MFB), normal-
ized mean error (NME), and normalized mean bias (NMB)
as the key indicators of model performance. In model-to-
observation comparisons all four metrics are meaningful, but
in intermodel comparisons AMET also calculates “bias” of
one model with respect to another, which is useful for test-
ing our hypothesis regarding the performance of our projec-
tion methods with respect to the NEI benchmark. The AMET
version used here (version 1.2.2) contains several updates to
the tool since the initial distribution, along with corrections
to the observational data originally distributed with the soft-
ware. In our intermodel comparisons, we filtered the model
results to display only monitored grid cells that had wildfires,
defined as those with nonzero AAB estimated for the statis-
tical d-s case described in Shankar et al. (2018). This case
was deemed to have the most number of grid cells with fires
among the three inventories and to have AAB most similar
to the gap-filled AAB data (Prestemon et al., 2016) created
for the historical period 1992–2010. Most model grid cells in
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this dataset had some fires, and therefore our analyses apply
to most of the domain.

3 Results

3.1 Ozone

3.1.1 Model evaluation against observations

In this section, we compare the performance of the two
downscaling methods to observations for ozone. We also
provide results using the NEI benchmark wildfire inventory
for reference. We evaluate the ozone model performance
against AQS observations over all of 2010. Boylan and Rus-
sell (2006) provide the performance guidelines in current use
in AQ model evaluation for MFB and MFE, with respect to
observations for ozone and PM, that are considered good, ac-
ceptable, or needing further investigation. We also apply the
recently recommended ozone performance metrics of Emery
et al. (2017) for monthly averaged NME, NMB, and corre-
lation coefficient r , shown in Table 2 along with mean mod-
eled and observed ozone. We compare the region-wide MFB
and MFE for modeled monthly averaged 1 h ozone relative
to AQS measurements in the soccer goal plots of Fig. S1
in the Supplement, with the performance goals and criteria
of Boylan and Russell (2006) shown as dotted lines. The
ozone performance statistics show very small differences in
the CMAQ results from the three sets of wildfire emissions.
Table 2 shows that in all three modeled cases, ozone is over-
estimated in all months of the fire season (March–November)
and the ozone model performance falls outside the perfor-
mance criterion of NME ≤ 25 % in all months, although it
meets the criterion for NMB (≤±15 %) in December–April
and October and for the correlation coefficient r (> 0.5)
in every month. Although Table 2 shows that the observed
monthly averaged ozone was below the recommended 40 ppb
cutoff for applying these criteria in all months, we consider
all of them because of the sporadic nature of wildfire and
its impacts on air quality, especially since these are monthly
averaged mixing ratios. MFB and MFE in Fig. S1 are in
the acceptable range of performance for ozone (≤ 50 % and
≤±30 %, respectively) from March to July but fall just out-
side of it from August to November. The overprediction is
greatest in the summer, especially August, being 8.4 ppb for
the statistical d-s, while the best agreement with observa-
tions within the fire season is for April in all three cases
(Table 2). However, differences among the three cases are
negligible. Of the three cases, the statistical d-s case has the
largest MFB, albeit by a very small margin, in October. There
is virtually no disagreement between the dynamical d-s and
NEI benchmark cases throughout the fire season except in
September. It is important to note that there are no wildfires
in January, February, and December in any of the inventories,
and thus the emissions for these months are the same across

all three modeled cases, corresponding to the NEI 2005 (de-
fault) inventory.

Based on the statistics in Table 2 and Fig. S1 there are no
discernible differences in their monthly average performance
over all sites and hours in any month, with a small exception
in October for the statistical d-s. This is confirmed by the lack
of distinction among the cases in the seasonal spatial distri-
butions of MFB (Fig. S2 in the Supplement), with the excep-
tion of one AQS site on the Kentucky–Illinois border in au-
tumn. The MFB has some of its largest values in the eastern
half of the domain in spring and is lowest in autumn domain-
wide. Comparing hourly ozone across networks in Fig. S2,
the SEARCH network sites (four rural, four urban) in the
Deep South show lower biases than the AQS sites across
the three cases and seasons. The lack of distinction across
the modeled cases for either network is consistent with the
results for the absolute difference in hourly ozone between
the two downscaling methods in the 24 h domain-wide trend
(Fig. S3 in the Supplement), thus, at most hours of a given
day over the whole domain, 75 % of the values modeled by
these two methods differ by ∼ 0.1 ppb or less.

To better understand the relative contributions of the mag-
nitude and location of the wildfire emissions to the October
1 h ozone performance differences among our three methods,
we filtered the three sets of modeled data over the range of
values showing the largest differences, at all grid cells that
contained monitors and also had some fire during the fire
season. We then examined the hourly O3 for October at a
few of these selected locations (Fig. S4 in the Supplement).
Figure S4a–d show the time series of ozone mixing ratios
and bias with respect to observations for all three modeled
cases at two AQS sites, 2105900005 and 210910012, close
to the Kentucky (KY) and Ohio (OH) border labeled KY–
OH (1) and KY–OH (2), respectively. Figure S4e–h display
the time series for the same metrics at AQS sites 291831002
and 295100085 farther west, on the Missouri (MO) and Illi-
nois (IL) border (labeled MO–IL (1) and MO–IL (2), respec-
tively). These four sites had some of the largest differences
in the statistical d-s case relative to the other two cases in the
low-to-middle range of values (0–70 ppb) during the fire sea-
son (see Table 3). With the exception of short periods of large
positive differences in the statistical d-s case from the other
two cases on specific days in October, they are all closely
aligned; some smaller differences are also seen between the
dynamical d-s and the NEI benchmark. At the KY–OH sites,
all model simulations underpredict the ozone peaks during 9–
11 October with the NEI having the greatest underprediction,
while all models have an equally high bias during 24–26 Oc-
tober. The statistical d-s case shows a large overprediction
on 30 October. The similarity of the temporal trends at these
two proximal sites suggests similar sources of the biases. The
two sites at the MO–IL border show less negative bias in the
models relative to AQS observations, but once again the sta-
tistical d-s has large positive biases with respect to the other
cases and to AQS for short periods mid-month and at the end
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Table 2. Model performance statistics for monthly averaged ozone vs. AQSa observations.

M
on

th Ozone (ppb) NMEb (%) NMBc (%) rd

AQSa Stat. d-se Dyn. d-sf NEI bmrkg Stat. d-s Dyn. d-s NEI bmrk Stat. d-s Dyn. d-s NEI bmrk Stat. d-s Dyn. d-s NEI bmrk

Jan 24.4 25.3 25.3 25.3 38.4 38.4 38.4 3.6 3.6 3.6 0.59 0.59 0.59
Feb 28.2 28.9 28.9 28.9 33.3 33.3 33.3 2.4 2.4 2.4 0.6 0.6 0.6
Mar 34.0 37.1 37.1 37.1 31.5 31.5 31.5 9.0 9.0 9.1 0.62 0.62 0.62
Apr 38.4 41.9 41.8 41.8 28.4 28.4 28.4 9.2 9.0 8.8 0.64 0.64 0.64
May 32.9 40.3 40.3 40.2 39.1 39.1 39.0 22.7 22.6 22.4 0.59 0.59 0.59
Jun 30.6 37.5 37.4 37.4 38.6 38.5 38.4 22.7 22.5 22.3 0.7 0.7 0.7
Jul 29.0 36.5 36.3 36.2 41.9 41.7 41.5 25.5 25.0 24.5 0.71 0.71 0.71
Aug 30.7 39.1 39.0 38.7 45.5 45.3 45.0 27.3 26.8 26.2 0.66 0.66 0.66
Sep 30.0 34.8 34.6 34.4 40.0 39.9 39.6 16.0 15.5 14.8 0.66 0.66 0.65
Oct 30.2 32.6 32.3 32.2 37.7 37.8 37.8 8.0 6.8 6.7 0.63 0.63 0.63
Nov 25.0 29.3 29.2 29.2 43.3 43.2 43.2 17.2 16.8 16.7 0.56 0.56 0.56
Dec 24.0 24.4 24.4 24.4 35.3 35.3 35.3 1.8 1.8 1.8 0.64 0.64 0.64

a AQS: air quality system. b Normalized mean error. c Normalized mean bias. d Correlation coefficient. e Statistical d-s. f Dynamical d-s. g NEI benchmark.

of the month. Its negative biases with respect to observations
also tend not to be as large as in the other two cases, e.g., on
11 October at the KY–OH (1) site. This would be expected,
as this case had the largest AAB values of the three invento-
ries (Shankar et al., 2018).

Results of our time series analyses at these and other AQS
sites are tabulated in Table 3, highlighting periods and loca-
tions of large differences either between the two downscaled
cases, or between one or the other case and AQS observa-
tions. Most of these occurred in October 2010, but there were
also a few outlier locations and times in early September.
Ozone is underpredicted at half the locations and times in the
statistical d-s case and at 76 % of them in the dynamical d-s.
The model biases with respect to AQS vary between−49 and
+47 ppb for statistical d-s and between −62 and +13 ppb
for dynamical d-s. The largest intermodel differences occur
in grid cells on days with little or no fire activity within or
near the cells; most of the grid cells indicated as no-fire loca-
tions in Table 3 had fewer than 5 ha burned annually. Thus,
the biases are not proportional to daily fire activity within the
grid cell, but, in general, when there is a large difference in
ozone between the two modeled cases, there is a comparable
difference between them in daily area burned in an adjacent
cell upwind, which is larger for the statistical d-s due to its
larger AAB as noted previously. There are also some dates,
e.g., 30 October, on which the model biases with respect to
observations are comparably large at multiple monitor loca-
tions, suggesting the impact of the same upwind fire event(s)
at these locations. We explore this further in the next section.

3.1.2 Intermodel comparisons

Hourly ozone

The modeling bias with respect to AQS observations is
shown in the previous analyses to be very comparable among
the three wildfire emission estimation methods; this may
mask intermodel differences and prevent understanding of

important sources of modeling uncertainties. Therefore, we
compare the differences in modeled 1 h O3 mixing ratios be-
tween each pair of the three CMAQ simulations at AQS sites
for the whole fire season (1 March–30 November) and for
the months with the maximum differences (Fig. 2). For the
whole wildfire season, the statistical d-s ozone values are the
highest and the NEI values are the lowest. The maximum
difference with respect to the NEI exceeds 45 ppb for both
downscaling methods (Fig. 2a, b, d, and e). Of these, statisti-
cal d-s has the largest maximum difference compared to the
other cases (> 67 ppb) and systematically positive domain-
wide mean differences (denoted MB in the figure) compared
to dynamical d-s and NEI of 0.12 and 0.23 ppb, respectively,
over the fire season (Fig. 2a and c). Comparable maximum
differences of > 67 ppb between the statistical d-s and ei-
ther of the other cases occur on 29 October (Fig. 2d and f)
due to an outlier value in the statistical d-s predictions at
AQS station 291893001 and nearly identical low ozone val-
ues there in the dynamical d-s and the NEI cases for that
hour. The maximum difference between the dynamical d-s
and the NEI of 45.7 ppb occurs on 6 July at a different station
(540390010), and, even with a positive mean difference with
respect to the NEI of 0.1 ppb over the fire season (0.17 ppb
in July), most of the dynamical d-s values are within 50 % of
the NEI (Fig. 2b and e).

To better distinguish between outlier values and more sys-
tematic biases in ozone, we compared the three cases in each
season (Fig. 3). Seasonally, the springtime differences are
the smallest between each pair of cases compared, as would
be expected due to low fire activity. Summer ozone differ-
ences between each pair of cases (Fig. 3b, e, and h) have a
smaller range and lower values (0.12–0.28 ppb) than in au-
tumn (0.11–0.32 ppb; Fig. 3c, f, and i). Comparing across
modeled cases, the systematic positive mean ozone differ-
ences in either downscaling method compared to the NEI
persist in each season (Fig. 3, a, b, d, e, g, and h). The largest
seasonal mean difference from NEI is in autumn in the case
of statistical d-s (0.32 ppb) and in summer in the case of dy-
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Figure 2. Comparisons of each pair of wildfire emissions methods for 1 h O3 (ppb) predicted at grid cells containing Air Quality System
(AQS) monitors and wildfires in 2010. (a, d) Statistical d-s vs. NEI benchmark, (b, e) dynamical d-s vs. NEI benchmark, and (c, f) statistical
d-s vs. dynamical d-s. Monthly simulations are for (d, f) October and (e) July.
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Table 3. Ozone at selected locations from statistical d-s, dynamical d-s, and AQSa network observations.

Date Time AQS site ID O3 (ppb) O3 Bias (ppb) Daily burned area (ha)b

(mm/dd/yyyy) (GMT) Obs. Stat. d-sc Dyn. d-sd Stat. d-s Dyn. d-s Stat. d-s Dyn. d-s

10/09/2010 03:00 1711700021 30 3.0 0.36 −27 −30
10/16/2010 14:00 53 90 43 37 −10
10/30/2010 10:00 35 59 39 24 4

10/08/2010 21:00 1711930072 1 7.2 0.034 6 −1
10/16/2010 11:00 31 77 37 46 6
10/29/2010 16:00 12 0.059 0.024 −12 −12 28.7e 23.4e

10/30/2010 10:00 24 54 31 30 7

10/10/2010 20:00 210590005f,3 16 4.3 2.7 −12 −13
10/17/2010 21:00 9 10 3.6 1 −5
10/30/2010 10:00 34 54 32 20 −2

10/09/2010 18:00 210910012f,3 42 0.97 0.13 −41 −42
10/10/2010 21:00 21 0.067 0.048 −21 −21
10/17/2010 21:00 15 1.5 0.14 −13 −15
10/30/2010 11:00 38 60 37 22 −1

10/08/2010 20:00 291831002g,4 8 0.29 0.0024 −8 −8
10/16/2010 11:00 45 70 37 25 −8
10/22/2010 17:00 37 20 10 −13 −23 201e 176e

10/29/2010 16:00 12 0.0048 0.000092 −12 −12 28.7e 23.4e

10/30/2010 10:00 42 60 35 18 −7

10/16/2010 09:00 2918600055 38 72 44 34 6 393e

10/08/2010 18:00 295100085g,4 4 0.019 0.0026 −4 −4 212e

10/16/2010 16:00 30 64 32 34 2
10/22/2010 16:00 27 23 12 −4 −15
10/29/2010 16:00 20 5.6 0.028 −14 −20 28.7e 23.4e

10/30/2010 16:00 36 1.1 0.55 −35 −35

09/06/2010 10:00 3904900376 45 69 42 24 −3

09/06/2010 10:00 3904900816 42 64 39 22 −3

10/10/2010 19:00 4716500077 35 0.76 0.47 −34 −35
10/17/2010 18:00 40 1.4 0.71 −39 −39
10/18/2010 16:00 66 7.1 3.8 −59 −62
10/31/2010 17:00 49 13 7.9 −36 −41 22.6e

09/09/2010 20:00 5116110048 55 59 29 4 −26 391e

09/05/2010 20:00 5403900109 26 16 2.1 −10 −24 284e 36.6e

09/09/2010 11:00 33 66 35 33 2 323e

a Air Quality System.b A blank in these columns indicates that there were no areas burned inside or within a few grid cells of the monitored cell. c Statistical d-s.
d Dynamical d-s. e Denotes the area burned in an upwind location within 1–2 grid cells of the monitored cell. f KY–OH sites in Fig. S4. g MO–IL sites in Fig. S4. AQS
site key: 1 Nilwood, Illinois; 2 Wood River, Illinois; 3 Owensboro, Kentucky; 4 St. Louis, Missouri; 5 Bonne Terre, Missouri; 6 Columbus, Ohio; 7 Hendersonville,
Tennessee; 8 Roanoke, Virginia; 9 Charleston, West Virginia.

namical d-s (0.15 ppb); the latter difference is likely due to
a few outlier locations, as autumn actually shows a greater
range of differences from NEI for this case. Over all seasons,
there is better agreement between the dynamical d-s and NEI
than between the statistical d-s and NEI. The reasons un-
derlying these intermodel biases are explored in Sect. 3.1.3

(Discussion). The previously noted positive mean difference
in the statistical d-s results relative to the dynamical d-s in-
creases progressively from 0.05 to 0.21 ppb from spring to
autumn (Fig. 3g–i).
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Figure 3. Seasonal comparisons of each pair of wildfire emissions methods for 1 h O3 (ppb) predicted at grid cells containing both Air
Quality System (AQS) monitors and wildfires in 2010. (a, b, c) Statistical d-s vs. NEI benchmark, (d, e, f) dynamical d-s vs. NEI benchmark,
and (g, h, i) statistical d-s vs. dynamical d-s.

Daily maximum 8 h average ozone

Although hourly ozone performance is a good indicator of
the robustness of the gas-phase chemical mechanism in the
model, in regulatory compliance modeling in the US, the
maximum value of the 8 h running average of ozone mixing
ratio over a given day (denoted MDA8) is the metric of rele-

vance. Its calculation is a requirement for state-level demon-
strations of attainment of the annual ozone standard (U.S.
EPA, 2007). Our comparisons of MDA8 between each pair
of CMAQ simulations (Figs. S5 and S6 in the Supplement)
show similar characteristics to those for 1 h ozone. Overall,
most of the MDA8 values show better agreement between
the cases than the 1 h values (within ±50 % of each other),
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as might be expected from the longer averaging periods for
this metric. However, as for 1 h ozone, the mostly positive
differences remain for either downscaling case with respect
to NEI and for the statistical d-s with respect to the dynamical
d-s case. There is also more variability in the timing and lo-
cation of these maximum intermodel differences (Fig. S5d–
f). They occur on 6 July for the statistical d-s case vs. NEI
(33.4 ppb), on 3 September for the dynamical d-s case vs.
NEI (30.2 ppb), and on 16 October for the statistical d-s case
vs. the dynamical d-s case (28.3 ppb). Seasonally (Fig. S6),
both downscaling cases have large differences from the NEI
at the upper end of the range in autumn, an indication of their
higher wildfire emissions estimates than in the NEI in this
season.

Ozone modeling uncertainties

Table 2 and Fig. S4 illustrate the large differences among the
downscaled inventories in relatively fire-free locations, pos-
sibly due to a greater impact in these environments from the
transport of precursors and ozone from fires upwind. This is
supported by the spatial distribution of the maximum abso-
lute difference in O3 and its precursor emissions between sta-
tistical d-s and dynamical d-s in each modeled grid cell over
the entire fire season (Fig. 4). In this comparison “fire sea-
son” is defined as 23 April–30 November 2010 because that
was the period of occurrence of these maximum differences.
The spatial pattern for O3 (Fig. 4c) shows that the geographic
areas of greatest difference in O3 are in the Appalachian re-
gion centered in West Virginia and also in “plumes” into the
southwestern corner of Missouri and out of its eastern border.
The spatial pattern of these differences appears to be aligned
with an underlying circulation, suggestive of transport from
upwind source regions. This possibility is borne out by the
spatial patterns of the maximum absolute difference in the
column totals of volatile organic compounds (VOCs) and
NOx point emissions between the two respective wildfire in-
ventories (Fig. 4a and b) over the same period. Column emis-
sion totals, rather than emissions in model layer 1, are used
in this comparison because they constitute the wildfire emis-
sions from each inventory, including what is allocated to aloft
layers and transported downwind in the AQ simulation and
which would be missed if the comparison had been limited to
emissions in layer 1. The largest differences are seen in VOC
emissions due to their much greater magnitude than those
of NOx, but both precursors have similar spatial patterns of
maximum absolute difference between the inventories. Peak
differences occur in both species emissions from the south-
western corner of Missouri and across its lower third, as well
as at the KY–OH border in Appalachia, south and east of the
ozone difference peak in West Virginia seen in Fig. 4c.

3.1.3 Discussion

Overall, our analyses of ozone model performance over the
fire season show very little difference among the three mod-
eled cases with respect to each other but a consistent and
near-identical overprediction of ozone across all three, with
the largest MFE (55 %) occurring in the winter. The sharp
differences seen in our results at individual locations and
times in the intermodel comparisons (Figs. 2, 3, S5, and S6)
between the two downscaled cases do not translate into major
differences in the overall 1 h and MDA8 ozone model perfor-
mance, with the possible exception of statistical d-s in Octo-
ber. In all cases the largest MFEs occur in winter, outside
the fire season (Fig. S1). As the three inventories used in the
simulations differ only in the wildfire emissions, the occur-
rence of the maximum MFE in winter indicates that those
emissions are not the major contributor to the ozone biases
for any of the cases. This is consistent with the findings of
Wilkins et al. (2018), whose brute-force zero-out analyses of
wildfire emissions impacts on air quality showed only a 1 %
increase in ozone due to wildfire from 2008 to 2012 over the
CONUS.

Despite the very slight differences in error statistics among
the three modeled cases for hourly ozone during the fire sea-
son, our intermodel comparisons do show sporadic large dif-
ferences between the statistical d-s and the other two cases
and somewhat smaller ones between the dynamical d-s and
the NEI. Differences in model formulations used in the two
meteorological downscaling methods, which can lead to spa-
tiotemporal differences in their predictions of peaks and
troughs in wildfire emissions, are discussed in Shankar et
al. (2018). The biases between the two downscaling meth-
ods are due to fundamentally different formulations of the
underlying models used to provide the climate inputs for the
AAB estimation. Statistical downscaling is a closer represen-
tation of the large-scale circulations modeled by the GCM
used in the climate downscaling, while the dynamical d-s
captures more of the prevailing local meteorological features,
which may be quite different in a given period from the large-
scale circulation. Furthermore, the WRF 3.4.1 model used
in the AAB estimates for the dynamical d-s inventory has a
known high precipitation bias (Alapaty et al., 2012; Spero
et al., 2014). The prediction of too much precipitation in the
AAB estimation model inputs could be another reason for
the lower wildfire emissions overall in the dynamical d-s case
(Shankar et al., 2018); this would account for its lower ozone
precursor emissions and mixing ratios compared to the sta-
tistical d-s case. Temporally, some of the largest differences
in 1 h ozone between the two downscaling cases occur on the
same day, e.g., 30 October, at multiple locations. Spatially,
they occur in relatively clean, i.e., low- or no-fire grid cells.
These results suggest that the greatest impact of their differ-
ent wildfire emissions magnitudes is on ozone mixing ratios
in low- or no-fire grid cells due to the transport of those emis-
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Figure 4. Maximum absolute difference between statistical d-s and dynamical d-s in each grid cell over the whole fire season in (a) hourly
VOC column emissions (g s−1), (b) hourly NOx column emissions (g s−1), and (c) hourly O3 mixing ratios (ppbV) in model layer 1. Here
the fire season is defined as 23 April–30 November; almost all grid cell maxima in absolute hourly O3 difference occurred in this time period.

sions (and ozone) from upwind locations with significant fire
activity.

The seasonal intermodel comparisons of Fig. 3a–f show
that the two downscaling methods differ not only in the mag-
nitude but also the timing of the maximum difference with
respect to the NEI. The NEI predicts less ozone than the other
cases in all the warmer months (summer and autumn). These
warmer months are dominated by fires in a denser canopy.
MODIS fire counts, which are used to estimate area burned in
the NEI, are known to be underestimated in the earliest ver-
sions of that inventory for wildfires, in part due to the diffi-
culty of under-canopy detection of small fires by the MODIS
instrument (Pouliot et al., 2008; Soja et al., 2009). In addition
to any ozone overestimates that are present in the downscal-
ing cases in these months (e.g., statistical d-s in October),
application of the MODIS estimates during canopy-heavy
months could also contribute to these lower values in the
NEI relative to the downscaling cases. The seasonal (posi-
tive) differences in ozone among the models are largest be-
tween either downscaling case and the NEI in autumn at the
upper end of the range and can be attributed to the effect of
less convective precipitation in autumn than in summer in the
southeastern US, which would increase the daily fire activity
estimates in the downscaling cases.

3.2 PM2.5

3.2.1 Model evaluation against observations

In this section, we compare the performance of the two
downscaling methods and the NEI wildfire inventory to
PM2.5 observations. We evaluate PM2.5 model performance
over all of the 2010 fire season (1 March–30 November), as
well as its seasonal variability, using observations from the
IMPROVE, CSN, and the SEARCH networks for PM2.5 and
its constituents.

Monthly variability

Table 4 summarizes the performance statistics (NME and
NMB) for PM2.5 compared to observations from the IM-

PROVE network. There is more variability in these metrics
seasonally and among the three simulation cases than in the
results for ozone (Table 2). Figure 5 shows the range of MFE
and MFB for total PM2.5 and for two key co-emitted PM con-
stituents from wildfires, elemental carbon (EC), and organic
carbon (OC). The overall performance for PM2.5 (Fig. 5a–c)
is in the acceptable range for MFE and MFB (≤ 75 % and
≤±60 %, respectively) in all months. It meets the stricter
criteria of Emery et al. (2017) for NME and NMB (< 50 %
and <±30 %, respectively) in April–September (Table 4).
Unlike ozone, which is overpredicted in the summer months,
total PM2.5 has the greatest underprediction in these months
in all three cases, with the statistical d-s having the least neg-
ative bias with respect to observations, followed by the dy-
namical d-s (except in July). The best performance statistics
are in April and May, while the greatest overpredictions dur-
ing the fire season are in November and March. However,
these last 2 months appear to be in a continuum of over-
predictions from late autumn when they are largest to early
spring when they are smallest across all cases. The NEI has
the best performance of the three cases for total PM2.5 in the
spring and autumn months and the most underprediction in
the summer months, though by small margins.

To investigate the possible source(s) of the PM2.5 biases,
we examined these error metrics for all the major PM con-
stituents. The results for EC and OC are shown in Fig. 5d–
f and g–i, respectively, and for the inorganic constituents
(SO4, NH4, and NO3) in Fig. S7 in the Supplement. EC
performance for all three cases meets the PM performance
goal (MFE≤ 50 % and MFB≤±30 %) of Boylan and Rus-
sell (2006) in April, June, August, and September and meets
their performance criteria (MFE≤ 75 % and MFB≤±60 %)
in the remainder of the year. MFB for EC is nearly zero
for the two downscaled cases and slightly negative for the
NEI in June and August but is positive in July for all three
cases. These results indicate that the pronounced negative
bias in PM2.5 in the summer months over all cases is not
attributable to EC. All three cases overpredict EC in autumn,
albeit within the good-to-acceptable range of performance.
As there are no fires in the winter months, the performance
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Figure 5. Monthly averaged model performance for total PM2.5 and key wildfire constituents relative to observations from the IMPROVE
monitoring network: (a, b, c) PM2.5, (d, e, f) elemental carbon (EC), and (g, h, i) organic carbon (OC).

for EC during that period is identical in all cases, and the
large positive winter bias in EC is clearly due to combustion
sources other than wildfires.

There is a severe underprediction in OC for all three cases,
except in winter (Fig. 5g–i), with MFB from April to Septem-
ber being outside the range of acceptable performance. The
negative biases are smallest for the statistical d-s, followed
by the dynamical d-s, and largest for the NEI, particularly
in summer and autumn, consistent with the progressive de-
crease in their respective wildfire PM2.5 emission magni-
tudes (Shankar et al., 2018) in these seasons. The negative
biases in PM2.5 in the summer months, which are common
to all three cases, are attributable in part to the OC under-
predictions, although species with larger mass fractions of

total PM could also be responsible. This is further exam-
ined in Fig. 6. OC performance is best in the winter months
when there are no differences in the input emissions among
the three cases; the performance also improves throughout
the fire season from the warmest to the coolest months in
all cases. We discuss some possible explanations for this in
Sect. 3.2.3.

Variability across network observations

The IMPROVE network is located mainly in the Federal
Class I Areas with monitoring provided by the National Park
Service (NPS) and administered by a consortium of several
resource management agencies, such as the National Fish
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Table 4. Model performance statistics for monthly averaged total PM2.5 vs. IMPROVEa observations.
M

on
th Total PM2.5 (µg m−3) NMEb (%) NMBc (%) rd

IMPa Stat. d-se Dyn. d-sf NEI bmrkg Stat. d-s Dyn. d-s NEI bmrk Stat. d-s Dyn. d-s NEI bmrk Stat. d-s Dyn. d-s NEI bmrk

Jan 7.0 11.5 11.5 11.5 75.9 75.9 75.9 65.1 65.1 65.1 0.68 0.68 0.68
Feb 8.4 13.7 13.7 13.7 71.7 71.7 71.7 63.1 63.1 63.1 0.69 0.69 0.69
Mar 7.2 10.8 10.8 10.8 64.7 64.8 64.7 50.0 49.9 49.9 0.62 0.62 0.62
Apr 8.5 9.3 9.1 9.0 43.4 42.2 41.7 9.2 6.6 5.3 0.52 0.52 0.52
May 7.6 7.4 7.2 7.1 47.5 47.1 46.0 −3.0 −4.9 −7.3 0.38 0.39 0.4
Jun 8.8 7.1 7.0 6.8 36.9 36.5 37.9 −19.8 −20.8 −23.4 0.45 0.45 0.44
Jul 9.8 8.2 7.5 7.6 41.2 40.0 40.2 −16.3 −23.7 −22.6 0.6 0.63 0.6
Aug 9.5 9.0 8.5 8.2 41.0 39.7 38.6 −5.2 −10.1 −13.3 0.52 0.53 0.57
Sep 7.6 9.9 9.5 8.7 61.6 57.2 48.8 30.6 24.8 15.2 0.46 0.49 0.6
Oct 6.9 10.8 10.2 10.1 69.0 63.0 61.1 56.2 47.9 45.7 0.65 0.62 0.62
Nov 6.5 10.9 10.5 10.5 79.4 78.3 74.9 67.3 64.4 61.6 0.6 0.57 0.58
Dec 8.0 10.9 11.3 10.9 46.6 45.7 46.6 36.4 35.5 36.4 0.74 0.74 0.74

a Interagency Monitoring of PROtected Visual Environments network. b Normalized mean error. c Normalized mean bias. d Correlation coefficient. e Statistical d-s.
f Dynamical d-s. g NEI benchmark.

and Wildlife Service, the USDA Forest Service, the Bu-
reau of Land Management. As such, IMPROVE monitors
are placed in rural areas, which allow reliable measurements
of ambient concentrations in the vicinity of fires. To evalu-
ate the performance of our wildfire inventories in simulating
air quality downwind and farther away from fires, we com-
pared the model results at IMPROVE sites with those across
the CSN and SEARCH networks for the species common
to all. There are some limitations in these observations: the
geographical coverage in SEARCH is limited to eight sta-
tions, located in Mississippi, Alabama, Florida, and Georgia,
and CSN had no EC measurements available beyond March
in 2010. Nevertheless, these cross-network comparisons can
provide additional insights into the geographical variability
of model performance for PM, e.g., urban vs. rural or the At-
lantic seaboard vs. the high fire areas in the interior of the
domain.

Total PM2.5 comparisons among IMPROVE and CSN
(Fig. S8 in the Supplement) show that the model performance
at the CSN sites is better than at IMPROVE sites, with lower
bias and error, especially in the summer and autumn, for all
three cases. In these warmer months, the least negative bias
at the CSN sites is for statistical d-s in August and the least
positive bias is for the NEI in September, but the differences
among the cases are very small. Figure S9 in the Supplement
compares the spatial distribution of MFB among the three
modeled cases across available networks for total PM2.5 (IM-
PROVE and CSN) in each season. As with the ozone spatial
comparisons of MFB (Fig. S1), the differences among the
cases in Fig. S9 are too slight to be resolved in the color map.
However, the bias differences across networks for PM2.5 in
Fig. S8 indicate better performance in some of the constituent
species in the warmer months at the urban sites than at the ru-
ral sites.

To investigate this further we compared monthly averaged
model bias and error against IMPROVE, CSN, and SEARCH
daily measurements (Fig. S10 in the Supplement) for OC and

NO3. These are the two PM constituents with poor model
performance at the IMPROVE sites (Figs. 5 and S7). As dif-
ferences in model performance among the modeled cases
were small in those comparisons, the Fig. S10 comparisons
are shown for a single case, statistical d-s, which had large
negative biases for OC and NO3 but also predicts higher
PM2.5 than the other cases. The errors and biases for OC
are comparably high at the IMPROVE and SEARCH net-
works and considerably less at the (urban) CSN monitors
than at IMPROVE (rural) sites; possible reasons for this
urban–rural bias in OC are examined in Sect. 3.2.3 (Discus-
sion). However, the monthly variability of the bias is seen at
the SEARCH and CSN monitors as well and goes from neg-
ative to positive progressively from the warm to cool months,
as at the IMPROVE sites.

NO3 performance falls outside the acceptable range at all
network sites, in almost all months, with CSN being the ex-
ception in winter. The results for NO3 are somewhat bet-
ter at the IMPROVE and CSN sites than at SEARCH sites,
which have considerably more underprediction from May to
September. The seasonal variability of the bias at all three
networks is similar to that of OC, at least in these months. As
with OC, the greatest negative bias in NO3 is at the SEARCH
sites in summer, with MFE in excess of 150 %. One contri-
bution to this large value is from the low concentrations of
NO3 in the southeastern US and the small numbers involved
in the error estimates. The NO3 bias is discussed further in
Sect. 3.2.3.

PM composition

There is a wide range of bias and error among PM and its
constituents in Figs. 5, S7, and S10, and in Tables 4 and S1–
S3 in the Supplement. Total PM2.5 does meet the criteria for
acceptable PM performance of Boylan and Russell (2006)
throughout the year and across all cases for MFB and MFE
and meets the performance criteria of Emery et al. (2017)
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Figure 6. Domain-wide seasonally averaged total mass of PM2.5 (µg m−3) and fractional mass of major constituents during the fire season
compared to observations from the IMPROVE network.

for NME, NMB, and r (< 50 %, <±30 %, and > 0.4, re-
spectively) in April–September. To further examine the con-
tributions of individual PM species to total PM2.5 perfor-
mance we compared the seasonally averaged PM2.5 compo-
sition (Fig. 6) over the fire season between IMPROVE ob-
servations and the model simulations. Overall, modeled PM
composition is overpredicted in sulfate and nitrate, under-
predicted in OC, and has mixed results for the other con-
stituents. Total PM2.5 mass is overpredicted in the spring and
autumn and underpredicted in the summer in all cases; the
summer underprediction is driven by the underprediction of
most species other than sulfate, particularly the severe un-
derprediction of the lumped species labeled “other”, which
includes fugitive dust. There is a decrease in predicted total

PM2.5 mass across the three cases, statistical d-s, dynamical
d-s, and the NEI and in the same direction as the decrease
in their wildfire emissions. This translates into a monotonic
decrease in the springtime average PM2.5 concentration of
∼ 1 % from statistical d-s to dynamical d-s to NEI. In the
summer and autumn, there is a 5 % decrease from statistical
d-s to dynamical d-s and a ∼ 2 %–3 % decrease from the dy-
namical d-s to the NEI. The differences of modeled PM from
the observations are much larger, from a low of−20 % in the
summer for the NEI to a high of 50 % for the statistical d-s
in the autumn, as noted in here and previously.

The contribution of sulfate to total PM concentration
over the southeastern US is substantial (26 %–32 %) in the
IMPROVE observations throughout the year and is over-
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predicted in every season across the three cases, although
Fig. S7a–c show it to be within the acceptable range in all
months except October. The sulfate overprediction also per-
sists in 2 months of the winter (January and February), when
all three cases have identical emissions inputs (Table S3); the
small difference in the dynamical d-s case from the other two
cases for December is due to ∼ 10 % fewer matched model–
observation pairs for this case in December. Statistical d-s,
by a slim margin, has the largest SO4 overprediction over the
whole year among the three cases, with an average NMB of
65.3 % and average NME of 78.2 % (Table S3), because of
the larger magnitude of wildfire PM emissions from which
its SO4 emissions contributions are estimated.

Due to the use of a common (NEI) speciation profile, both
ammonia (NH3) and gas-phase NO3 from wildfires are allo-
cated the same fractions of total PM2.5 emissions in all three
wildfire inventories and across all seasons. Particulate NO3
contribution to total PM2.5 mass in the IMPROVE obser-
vations is between 2.5 % in the summer, ∼ 8 % on average
in the spring and autumn (Fig. 6), and as much as ∼ 25 %
in winter (not shown). It has a positive MFB of 14 %–51 %
in the cooler months of the fire season over all three cases
(Fig. S7g–i) but has an equally negative MFB in the warmer
months; the monthly biases are more or less uniform across
the three modeled cases. Once again, the statistical d-s case
has the highest NMB (234 %) for NO3 among the three cases
(Table S5) in October. There is very little difference in the
positive biases in the remainder of the year across the cases.
On the other hand, ammonium (NH4), a PM2.5 constituent
that partitions between SO4 and NO3, contributes a greater
fraction to total PM2.5 mass on average (12 %–17 %) than
NO3 does throughout the year (Fig. 6). Its bias is consider-
ably less than that of NO3 across the three cases and compa-
rable to that of SO4.

3.2.2 Intermodel comparisons

Daily average PM2.5

Our PM2.5 model evaluation shows that although there is
slightly more variability in the model simulation results for
PM2.5 than in those for ozone, these differences are much
smaller than their differences from observations. Our inter-
model comparisons of PM2.5 are motivated by the need to
better understand modeling uncertainties and compensating
errors and how they affect overall model performance. PM2.5
concentrations summed over all constituent species are com-
pared among the three cases over the whole fire season and
inter-seasonally (Figs. 7 and 8) at grid cells that contained
both IMPROVE monitoring sites and wildfires at the tempo-
ral frequency of the measurements. There is less statistical
power in these results than in those for ozone due to fewer
monitors in IMPROVE than in AQS in the eastern US, in ad-
dition to the lower temporal frequency of the measurements
(daily averages measured twice a week). As with ozone,

however, the largest differences in PM2.5 are in the statis-
tical d-s case with respect to the other two cases (Fig. 7a,
c, d, and f). As with ozone, the smallest differences between
cases occur in the spring and the largest ones occur in autumn
(Fig. 8g–i). However, the dates of maximum intermodel dif-
ferences do not coincide with those for ozone in most sea-
sons, suggesting a different source contribution to these dif-
ferences than that for ozone. This is explored in the next sec-
tion.

PM modeling uncertainties

The time frequency of PM2.5 measurements is twice per
week in IMPROVE among about 28 sites in the southeast-
ern US and thus considerably less than in the AQS measure-
ments for hourly and MDA8 ozone. Nevertheless, for all the
days available in the fire season at all the locations show-
ing large differences (i.e., > 50 %) between the downscaling
cases, we performed a similar analysis to that for ozone. Ta-
ble 5 summarizes modeled and observed results for PM2.5 at
these outlier locations and their times of occurrence, which
are somewhat different from those for ozone. The largest dif-
ferences in PM2.5 occur in the summer, particularly in Au-
gust. With the exception of James River Face in coastal Vir-
ginia, which is a few grid cells to the northeast of AQS site
511611004, there is little agreement in the locations of these
large differences in PM2.5 with those in ozone and none in
their dates of occurrence. This lack of agreement suggests a
different underlying source of these occurrences for PM2.5
from that for ozone.

Despite the differences in the data of Tables 3 and 5, they
do show some similarities. For all the 17 occurrences listed in
Table 5 that show large differences in PM2.5 between the two
downscaling cases, the statistical d-s case once again has the
larger biases with respect to observations, ranging from 0.42
to 14.26 µg m−3. As with ozone, there is more negative bias
(in 7 of the 17 occurrences) in the dynamical d-s case with
respect to measurements, with the bias ranging from −3.52
to 7.81 µg m−3. Also, as with ozone, the difference in PM2.5
between the two cases in a given grid cell is not proportional
to the differences in daily burned area within the cell, which
is zero or negligible for both cases in most of the 17 occur-
rences. These large differences could be a result of the differ-
ences in daily fire activity in adjacent grid cells upwind, due
to the larger burned area in the statistical d-s case than in the
dynamical d-s case. This is true of each of the grid cells in
Table 5 that had an adjacent grid cell with a fire on a given
day.

As in the case of ozone, the domain-wide 24 h trend
(Fig. S11 in the Supplement) of absolute difference in PM2.5
between the downscaling cases shows a very small median
difference (on the order of 10−3 µg m−3) but with even less
variability than for ozone and slightly more temporal vari-
ability at the upper end of the range than for ozone in Fig. S3.
Primary emissions and their variability could contribute to a
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Figure 7. Comparisons of each pair of wildfire emissions methods for PM2.5 (µg m−3) predicted at grid cells containing both Intera-
gency Monitoring of PROtected Visual Environments (IMPROVE) monitors and wildfires in 2010: (a, d) statistical d-s vs. NEI benchmark,
(b, e) dynamical d-s vs. NEI benchmark, and (c, f) statistical d-s vs. dynamical d-s. Monthly simulations are for (d, e) September and
(f) October.
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Figure 8. Seasonal comparisons of each pair of wildfire emissions methods for PM2.5 (µg m−3) predicted at grid cells containing Interagency
Monitoring of PROtected Visual Environments (IMPROVE) monitors and wildfires in 2010: (a, b, c) statistical d-s vs. NEI benchmark,
(d, e, f) dynamical d-s vs. NEI benchmark, and (g, h, i) statistical d-s vs. dynamical d-s.

greater degree in these differences, as primary PM is a signif-
icant fraction (∼ 23 %) of these wildfire emissions excluding
CO. The spatial distribution of the maximum absolute differ-
ences in PM2.5 throughout the fire season in the lowest model
layer (right panel of Fig. S12 in the Supplement) shows a
similar pattern overall to the ozone differences in that it is

appreciable mostly over the central and northeastern parts of
the domain. However, the spatial pattern for PM2.5 concen-
trations more closely resembles that of the column-total point
wildfire emissions of PM2.5 (Fig. S12a), than in the case of
ozone, particularly in southeastern Missouri and Appalachia.
This indicates the greater role in the PM2.5 concentration dif-
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Table 5. PM2.5 at selected locations from statistical d-s, dynamical d-s, and the IMPROVEa network.

Date IMPROVE site name and state PM2.5 PM2.5 bias Daily burned area
(mm/dd/yyyy) (µg m−3) (µg m−3) (ha)b

Obs. Stat. d-s Dyn. d-s Stat. d-s Dyn. d-s Stat. d-s Dyn. d-s

09/05/2010 Brigantine NWRd, NJ1 4.59 17.4 10.72 12.81 6.13 313c

09/17/2010 7.38 11.59 7.01 4.21 −0.37

08/27/2010 Cadiz, KY2 8.44 18.41 11.00 9.97 2.56

08/27/2010 Cherokee Nation, OK3 9.48 13.34 8.62 3.86 −0.87

08/21/2010 El Dorado Springs, MO4 8.88 19.08 16.69 10.2 7.81
08/24/2010 12.27 14.40 9.09 2.13 −3.17
09/05/2010 4.79 9.34 5.27 4.56 0.49
09/23/2010 7.20 7.62 5.09 0.42 −2.11

09/05/2010 Great Smoky Mountains NPe, TN5 3.99 12.5 7.25 8.51 3.26

06/07/2010 Hercules Glades, MO 4.10 12.35 4.18 8.25 0.08 59.0c

06/19/2010 6.14 10.77 6.48 4.63 0.34

08/06/2010 James River Face WAf, VA6 14.12 25.45 10.60 11.33 −3.52 48.0c

11/10/2010 Lake Sugema, IA7 10.81 16.68 8.50 5.87 −2.31 162c 106c

06/07/2010 Linville Gorge, NC8 6.40 9.89 6.38 3.49 −0.02 20.3c

09/11/2010 Mingo, MO 3.63 12.86 6.28 9.23 2.65
10/02/2010 5.03 19.29 8.56 14.26 3.53

10/29/2010 Sikes, LA9 4.46 13.35 8.81 8.89 4.35

a Interagency Monitoring of PROtected Visual Environments network. b A blank in these columns indicates that there were no areas burned inside or within a few grid cells of
the monitored cell. c Denotes the area burned in an upwind location within 1–2 grid cells of the monitored cell. Federal Class I Area designations: d national wildlife refuge,
e national park, f wilderness area. State abbreviations: 1 New Jersey, 2 Kentucky, 3 Oklahoma, 4 Missouri, 5 Tennessee, 6 Virginia, 7 Iowa, 8 North Carolina, 9 Louisiana.

ferences played by primary wildfire PM emissions than in the
case of ozone.

3.2.3 Discussion

Across all three cases modeled, PM2.5 shows an increasingly
negative bias with respect to IMPROVE in the late spring
through the summer, changing to a progressively more posi-
tive bias from autumn into winter, which has the largest MFE
and MFB of 56.2 % and 44.5 %, respectively. The overall
model performance for PM2.5 is acceptable in all cases but
masks compensating errors in the PM constituents. Of these,
the signature species for wildfires are EC and OC. Model per-
formance for EC, which is primarily emitted in wildfires, is
good-to-acceptable and mostly positively biased over the fire
season. Taken alongside the poor performance for OC, which
is mostly secondarily produced from precursors emitted from
wildfires and other natural and anthropogenic sources, this
indicates that wildfire EC emissions are not the driver of the
pronounced negative biases seen in PM2.5 in the summer
months. The OC biases are mostly negative and most pro-
nounced in the warmer months; they are smallest for statisti-
cal d-s and greatest for the NEI, which, as noted previously,

had an underestimation of emissions in the 2010 wildfire in-
ventory due to the undercounting of fires below the canopy
by MODIS (Pouliot et al., 2008). This underestimate would
be greatest in the months when the canopy cover is greatest
and could also account for EC being better predicted in June
and August with the downscaled inventories than with the
NEI inventory.

Another, and perhaps the biggest, contribution to the low
bias in PM2.5 in summer comes from species other than the
major organic and inorganic components (labeled “other” in
Fig. 6). Other PM is an even larger fraction of the observed
summer-average PM2.5 concentration than sulfate (Fig. 6).
Fine PM is the second-largest component (∼ 43 %) after pri-
mary OC in wildfire PM emissions in all three inventories
and is the primary contributor to other PM from wildfires in
CMAQ. Given the uniform PM speciation profile across all
seasons in all three wildfire inventories in this study and the
relatively good comparisons of other PM with IMPROVE ob-
servations in spring and autumn, wildfire emissions are not
the likely source of the poor summertime performance for
this species. Fine dust episodes in the eastern US and the
Caribbean in the summer have been shown through satellite
observations to be associated with long-range transport from

www.atmos-chem-phys.net/19/15157/2019/ Atmos. Chem. Phys., 19, 15157–15181, 2019



15176 U. Shankar et al.: Evaluating wildfire emissions projections in air quality simulations

the Sahel (Prospero, 1999; Prospero et al., 2014). The severe
summertime underprediction of other PM suggests a need to
refine the eastern boundary conditions, which were the same
across the three CMAQ simulations, specifically with respect
to their intra-seasonal variability.

The large negative biases in OC predictions, which are
seen across both rural and urban networks, are likely to be
a result of underprediction in the CMAQ v5.0.2 secondary
organic aerosol (SOA) mechanism rather than in the primary
wildfire OC emissions. Some of the underestimation could
come from the assumed NEI temporal profiles for emissions
from smaller wildfires that are less than a full day in duration
(Wilkins et al., 2018). Residential wood combustion has also
been shown to be as a source of underestimation of carbona-
ceous PM in the NEI in a 2007 study over the southeastern
US (Napelenok et al., 2014), and this possibility is supported
by the better model performance for OC at CSN (urban) sites
compared to IMPROVE (rural) sites. The potential role of
residential wood combustion needs to be further examined
within the context of the spatial and temporal distribution of
emissions from this source for our modeling domain in 2010.

The very good performance for OC in the winter that grad-
ually degrades going from cool to warm months is an indica-
tion that temperature dependence of precursor emissions may
not be well represented either in the fire emissions model or
in the SOA formation pathways in the CMAQ organic chem-
istry formulation. As the emission factors in the BlueSky
fire emissions model do not adjust for the temperature de-
pendence of individual PM species, the CMAQ SOA model
is the most likely source of the seasonal variability of this
bias. The underprediction of SOA in CMAQ is addressed
somewhat by the volatility basis set (VBS – Donahue et al.,
2013) implemented in a later version of CMAQ (CMAQ-
VBS – Koo et al., 2014) than the one used here. However,
large uncertainties still remain in the representation of semi-
volatile and intermediate VOCs (IVOCs), especially in the
primary emission estimates and in the SOA formation path-
ways, according to Woody et al. (2016). These authors have
argued for improving the CMAQ-VBS model further by in-
cluding representations of semi-volatile organic compounds
(SVOCs) in the form of primary organic aerosol (POA) and
IVOCs.

In contrast to OC, EC has its highest MFB and MFE in
winter for all the cases modeled. As EC is co-emitted with
OC in biomass and biofuel combustion, this indicates that
the emission factors, and, in particular, the OC/EC emission
ratios used for non-wildfire combustion sources that are ac-
tive in winter, e.g., biofuel, could account for the poor EC
model performance. The monthly results for the EC and OC
error metrics, which show a consistently higher MFB for EC
than for OC indicate that the OC/EC emission ratios could
also be an issue in wildfire emissions.

Our PM composition analyses show that the constituent
driving total PM2.5 performance is sulfate, due to its having
the highest PM mass fraction. Wildfire emissions do not have

a major source contribution to the modeled sulfate concen-
tration. Primary SOx emissions constitute 1.8 % of the total
emissions from wildfires, as evidenced by the nearly constant
concentration of SO4 across the three modeled cases in ev-
ery season. Thus, the sulfate overprediction (MFB > 30 %)
seen throughout the fire season is likely due to an overesti-
mation in SOx emissions from sources other than wildfires or
in the secondary sulfate production pathways in CMAQ, no-
tably its cloud chemistry, rather than due to an overestimation
of wildfire SO4 emissions. In the other two major inorganic
species, NO3 and NH4, there are large overpredictions for
NO3, most notably in autumn and winter, and largest (albeit
by a small margin) in the statistical d-s case. Furthermore, the
NH4 overprediction is comparable to that of SO4 and much
smaller than that of NO3 across all cases and seasons, sug-
gesting that much of the NH4 mass is associated with SO4.
The good-to-acceptable performance for NH4, which has a
significant contribution from wildfire-emitted NH3, increases
the likelihood that wildfire emissions, which are the only
source of difference among the three inventories, are not the
driver of the large positive bias in NO3 in the cooler months
and clearly not in the winter. The overpredictions in SO4 and
NH4 and, to a lesser extent, in NO3, offset the substantial un-
derprediction in OC that persists throughout the fire season,
leading to an acceptable aggregate PM2.5 performance.

It is worth noting that in the NO3 performance, the NMB
values for NO3 in Table S3, as well as the seasonally aver-
aged PM concentrations (Fig. 6), show a uniformly positive
bias for this constituent, while a number of the monthly MFB
values in Fig. 5 are negative (although on a seasonal-average
basis, they are consistent with the results of Fig. 6). The MFB
metric is considered a better alternative to NMB at low con-
centrations (Boylan and Russell, 2006), as often occur in
NO3 over the southeastern US. This is because MFB nor-
malizes the bias with respect to the average of modeled and
observed values, keeping it bounded (between −200 % and
+200 %), whereas NMB normalizes the bias with respect to
observations and can become very large at low concentra-
tions. However, somewhat misleading results such as cited
here for NO3 are known to occur in using the MFB. Alter-
native metrics that avoid this issue while preserving its de-
sirable features (boundedness and symmetry) were proposed
(Yu et al., 2006), but more nuanced and species-specific
performance criteria and goals have been recommended by
Emery et al. (2017) and provide the guidance for our model
performance analysis in the case of NO3.

The intermodel comparisons for PM2.5 show similar dif-
ference patterns to those for ozone among the modeled cases
in the scatterplots, but the largest differences are often not
coincident spatially or temporally with those for ozone, indi-
cating an alternative contributing source. While ozone is en-
tirely produced in secondary chemical reactions from the pri-
mary emissions of NOx and VOC, PM can have both primary
and secondary components. It is likely that the PM concen-
tration differences among the modeled cases are driven more
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by differences in their primary PM emissions. This is also
supported by the similarity in the spatial patterns of maxi-
mum absolute difference over the fire season in PM2.5 col-
umn emissions and surface concentrations between the two
downscaled cases.

4 Conclusions

We have compared two wildfire emissions estimation meth-
ods that are both based on projections of AAB from a sta-
tistical model to an empirically based benchmark inventory
compiled by the U.S. EPA, by using them in AQ simula-
tions of a historical period (2010). We compared the mod-
eled ambient concentrations among the three cases simulated
with these inventory methods and between each case and air
quality observations from various ground-based networks for
1 h ozone, 8 h maximum daily average ozone (MDA8), and
PM2.5 and its constituents.

Our results show nearly identical performance for all three
cases against AQS network observations for hourly ozone.
The O3 differences among the cases are 0.08 %–0.93 %, but
the biases are much larger for any of the cases with respect
to AQS observations, being 13 %–25 % over the entire year.
Ozone has acceptable performance in spring through mid-
summer but degrades (MFE > 50 %) in the cooler months,
particularly in the fire-free winter. These results indicate that
wildfire emissions are not a major contributor to the model
errors in ozone. The statistical d-s has a significant high bias
in O3 with respect to the other two methods at specific lo-
cations in October, due to its larger AAB estimates. Large
ozone differences between the two downscaling methods oc-
cur mostly in the northeastern quadrant of the domain and
downwind from peak differences in VOC and NOx column
emissions from wildfires in eastern Missouri and Appalachia.
These results indicate that transport and secondary chemical
transformations of precursor emissions from high fire activ-
ity areas to fire-free areas downwind drive the largest O3 dif-
ferences seen between the two downscaling methods.

The PM2.5 model performance against observations from
the IMPROVE network is acceptable throughout the year for
all three methods but is the result of compensating biases
in SO4 (positive) and OC (negative) in almost every month.
Sulfate, with its highest PM mass fraction, drives the PM2.5
bias, which is still within acceptable levels. The minimal con-
tribution of SOx to the total emissions from wildfires points
to other anthropogenic SOx sources or the CMAQ SO4 pro-
duction pathways as the main cause of this overprediction.
EC and NH4, which are primarily emitted in wildfires also
have good-to-acceptable performance in almost all months.
OC, which has a larger contribution from secondary chemi-
cal reactions, has its largest underpredictions (beyond accept-
able levels) in the summer, for the NEI. Given the good-to-
acceptable performance for EC, which is co-emitted in wild-
fires, the likely cause of the OC biases is other VOC sources

or secondary chemical reactions in the CMAQ model. Fu-
ture assessments with CMAQ-VBS (Koo et al., 2014) or even
later enhancements to the SOA mechanism, suggested by Pye
et al. (2015) for the treatment of organic nitrates, could help
address the SOA underprediction and improve the OC model
performance overall. The dramatically better OC model per-
formance at urban sites compared to rural sites also indicates
potential underestimates of residential wood combustion and
biogenic emissions in rural areas.

Particulate NO3, like much of OC, is formed through sec-
ondary processes. Its much lower concentrations in the sum-
mer than in the other seasons are correlated with that season’s
larger overpredictions of SO4 and smaller overpredictions of
NH4, since less NH3 is available for NO3 formation. Kelly et
al. (2014) cite gas–particle partitioning in the ISORROPIA II
thermodynamics model as one of the factors contributing to
the underprediction of NO3 in CMAQ version 5.0; this may
have some bearing on our summer NO3 results. The severe
overprediction of NO3 in combination with larger overpre-
dictions in NH4 in the rest of the fire season indicates possi-
ble overestimates in the emissions of NH3 or anthropogenic
NOx; the latter is more likely, as NH4 performance is accept-
able over these months.

As with ozone, the much smaller (1 %–8 %) intermodel
differences among the three wildfire emission methods for
PM2.5 than their individual biases with respect to observa-
tions (−14 % to +51 % at IMPROVE sites) during the fire
season indicate that modeling uncertainties other than wild-
fire emissions contribute the larger part of the model bias.
Differences in PM between the two downscaling cases also
confirm our previous conclusions for ozone: that their biggest
impact is in fire-free locations downwind from regions of
high fire activity but with a bigger contribution from the
transport of primary PM emissions. These analyses, however,
do not clearly point to a superior candidate for estimating
wildfire emissions, as all three methods have uncertainties.
On average, the statistical d-s predicts PM2.5∼ 7 % higher
than the other methods in the summer when all methods un-
derpredict observations and ∼ 4 % higher in the remainder
of the fire season when they all overpredict observations, as
a direct result of its higher AAB estimates. To allow one-
to-one comparisons of the two downscaling methods in their
wildfire emissions estimates, Shankar et al. (2018) used a sin-
gle GCM (CGCM31) for the statistically downscaled meteo-
rological inputs in these AAB estimates, rather than the full
ensemble of GCM results used in Prestemon et al. (2016).
One avenue for future improvements could be the use of the
statistical d-s emissions estimates from the full ensemble in
future assessments. Multi-model ensembles are important for
bracketing uncertainties in model results. Of the two down-
scaling methods, dynamical d-s compares more closely with
the NEI, which has the smallest biases with respect to ob-
servations, except in summer. Both of these methods under-
predict summertime PM2.5 but for different reasons. In the
case of dynamical d-s, which estimated much lower wild-
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fire emissions than statistical d-s (Shankar et al., 2018), the
underprediction is likely due to the overprediction of convec-
tive precipitation in summer by the WRF 3.4.1 model used in
its AAB estimation inputs. This bias could be compounded
by the propagation of similar bias in the WRFG model from
which those WRF simulations were nested down. In the
NEI’s early versions of the SMARTFIRE system, the likely
cause of underprediction is the undercounting of fires below
canopy by MODIS in the summer. Later versions of WRF
and SMARTFIRE have addressed their respective underesti-
mation issues and could benefit such evaluations in the fu-
ture.

In correcting the biases in the two downscaling approaches
a clear “winner” could emerge in the resulting air qual-
ity model performance, but it bears remembering that each
approach has inherent advantages and disadvantages. The
greater computational efficiency of statistical downscaling
when using an ensemble of climate models allows for a richer
dataset of inputs to estimate the AAB used to calculate wild-
fire emissions, even if it lacks the accuracy of mesoscale me-
teorological modeling. It also allows for greater flexibility
in selecting the years for the air quality simulations, which
are themselves a source of uncertainty in the predictions,
given the year-to-year variability in the quality of the emis-
sions inventories and downscaled meteorological inputs. On
the other hand, a later WRF model version would reduce un-
certainties in the predicted precipitation in the dynamical d-s
method. This would allow a consistent and reliable set of me-
teorological inputs to better estimate AAB and wildfire emis-
sions and simulate air quality in a given year. The disadvan-
tage in this case is perhaps a smaller number of climate mod-
els and model years for the downscaling due to the greater
computational burden imposed by a dynamic meteorological
model simulation.

In conclusion, both the downscaling methods are seen to
perform comparably to the NEI wildfire inventory for ozone
throughout the year and better than the NEI for total PM2.5
in the summer, in partial confirmation of our hypothesis.
The good-to-acceptable performance for primarily emitted
EC and NH4 (from ammonia), especially by the downscal-
ing methods, provides confidence in our overall methodology
for estimating wildfire emissions and in the likelihood that
these emissions are not the major drivers of the biases in PM
species dominated by secondary production (OC and NO3).
That the largest errors in PM occur in SO4, which has a very
small contribution from wildfires, and in the case of ozone
in the fire-free winter months, point to chemical production
pathways of these pollutants from non-wildfire sources as
fruitful targets for future model improvements. Overall, the
downscaling methods meet the criterion of being comparable
to the NEI in simulating the air quality impacts of current-day
wildfires, while enabling assessment of those impacts much
farther into the future.
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