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Abstract
Microbial communities are essential components of aquatic ecosystems through their contribution to food web

dynamics and biogeochemical processes. Aquatic microbial diversity is immense and a general challenge is to under-
stand how metabolism and interactions of single organisms shape microbial community dynamics and ecosystem-
scale biogeochemical transformations. Metagenomic approaches have developed rapidly, and proven to be powerful
in linking microbial community dynamics to biogeochemical processes. In this review, we provide an overview of
metagenomic approaches, followed by a discussion on some recent insights they have provided, including those in
this special issue. These include the discovery of new taxa and metabolisms in aquatic microbiomes, insights into
community assembly and functional ecology as well as evolutionary processes shaping microbial genomes and
microbiomes, and the influence of human activities on aquatic microbiomes. Given that metagenomics can now be
considered a mature technology where data generation and descriptive analyses are relatively routine and informa-
tive, we then discuss metagenomic-enabled research avenues to further link microbial dynamics to biogeochemical
processes. These include the integration ofmetagenomics intowell-designed ecological experiments, the use ofmeta-
genomics to inform and validate metabolic and biogeochemical models, and the pressing need for ecologically rele-
vant model organisms and simple microbial systems to better interpret the taxonomic and functional information
integrated in metagenomes. These research avenues will contribute to a more mechanistic and predictive under-
standing of links between microbial dynamics and biogeochemical cycles. Owing to rapid climate change and
human impacts on aquatic ecosystems, the urgency of such anunderstanding has never been greater.

Microbes are critical components of aquatic ecosystems, under-
pinning the provision of multiple ecosystem services (Azam and
Malfatti 2007; Falkowski et al. 2008). Their communities, comprised
of bacteria, archaea, microbial eukaryotes and viruses, represent
nearly unfathomable levels of aquatic biodiversity (Thompson et al.
2017). A grand challenge facing the field of aquatic microbiology is
our current inability to sufficiently understandhow themetabolism
of single organisms combined with abiotic and biotic interactions
shape microbial communities and the ecosystem-scale biogeo-
chemical transformations they mediate (Graham et al. 2016). This

systems-level understanding requires an integration of research
efforts in the fields of microbial ecology, evolution, and biogeo-
chemistry. These fields are finding common ground and collabora-
tive insights through the incorporation of genomic approaches into
their scientific tool kits to better understand the underlying organis-
mic processes and their regulation.

High throughput DNA sequencing technologies have dramati-
cally and fundamentally advanced our ability to characterize
microbial biodiversity at multiple levels of resolution, driving
insight into the functional potential of ecosystems and generating
new hypotheses to test. Metagenomic approaches, which we
define as the production and analyses of shotgun genomic data
from microbial assemblages, have been extensively adopted by
aquatic scientists and are now routinely employed in studies of
diverse aquatic habitats.We also acknowledge that the termmeta-
genomics has been used to encompass single gene marker studies
(Gilbert and Dupont 2010). In any case, microbiologists have
coined the term “microbiome” to refer to the complete assemblage
of microbes in a discrete habitat, as revealed mainly by “‘omics”
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approaches. Thus, metagenomics has enabled us to dive deep into
the water microbiome. Some 20 years after the term “meta-
genomics” was coined (Handelsman et al. 1998), metagenomics
can now be considered a mature technology, where enormous
data sets (Sunagawa et al. 2015; Almeida et al. 2019) and an exten-
sive set of analysis tools are accessible to many researchers
(Mitchell et al. 2017).Metagenomics has generated unprecedented
insights, but a link to well-formulated questions and experiments
is oftenmissing. It remains challenging to integratemetagenomics
into existing ecological and biogeochemical frameworks and to
advance beyond descriptive science of “who’s there?” and “what
are they able to do?” to a more predictive understanding based on
mechanisms. The need for such understanding has never been
more relevant in light of ongoing global climate change and mas-
sive human-induced alterations of aquatic ecosystems.

This special issue of Limnology & Oceanography focuses on
recent insights into microbial ecology and biogeochemistry that
were made possible through the application of metagenomic
approaches, broadly defined. Here, we provide a brief introduction
to the field and approaches used in metagenomics stating their
potential, but do not focus on metagenomics methods and
workflowsper se, as numerous recentmethodological reviews exist

(Quince et al. 2017; Knight et al. 2018). We highlight some of the
recent impactful metagenomics studies frommarine and freshwa-
ter ecosystems, including those in this special issue. We then
address some of the overarching concepts and challenges cur-
rently being discussed where metagenomics is involved. These
include (1) the importance of integrating metagenomic
approaches into experimental lab- and field-based investigations,
particularly at the ecosystem scale; (2) the use of metagenomics
data to inform and validate biogeochemical andmetabolicmodels
of aquatic microbial systems; and (3) the need for relevant model
organisms and systems to allow deeper interpretation of meta-
omics data sets and enable more mechanistic hypothesis testing
(Fig. 1). In spite of current challenges, the promise of meta-’omics
to transform our comprehension of aquatic microbial community
structure and functioning is exciting and inspiring. There has
never been amore thrilling time to be an aquaticmicrobiologist.

A brief overview of metagenomic approaches
The legacy of small subunit (SSU) ribosomal RNA (rRNA)
based approaches

Metagenomics can trace its heritage back to 1986 when Pace
and collaborators proposed that the diversity of naturalmicrobial

Fig. 1. A conceptual framework for how to integrate the diversity of meta-omics approaches into advanced studies of aquatic microbial ecology and bio-
geochemistry as exemplified by the contributions to this special issue. The red box represents an overview of the meta-omics tool kit and the microbial
genotype to phenotype information that can be provided by meta-omics approaches. The orange box highlights the importance of environmental and
biogeochemical metadata that are essential in linking community dynamics to biogeochemical processes. The green box depicts the importance of
model systems, hypothesis testing, and modeling as detailed in Section 4 of this review article. The large double-ended arrow indicates how linking
microbiology tools and approaches can facilitate an integration of ecological and biogeochemical knowledge of aquatic microbiomes, and move micro-
bial ecology from a descriptive to a more predictive discipline.
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communities could be investigated by directly cloning and ana-
lyzing DNA from the environment (Pace et al. 1986). Their strat-
egy was based on sequencing the SSU rRNA gene, which at the
time was the new gold standard phylogenetic marker gene used
to reconcile all of cellular biodiversity into a single molecular tree
of life (Woese 1987). Over the next 30 yr, this revolutionary
approach revealed an immense diversity of microbial communi-
ties and showed that much of this diversity is not represented in
microbial culture collections, leading to the concept of the
“unculturedmicrobialmajority” (Rappé andGiovannoni 2003).

Studies on the phylogenetic composition of microbial com-
munities based on SSU rRNA genes or other single marker gene-
based approaches are still among the most ubiquitously used
high throughput DNA sequencing approaches in microbiology,
and marker gene surveys continue to illuminate diversity and
community structure patterns in previously underexplored
aquatic environments. For example, in this issue, Cruaud et al.
(2020) investigated the seasonal dynamics of river bacterial com-
munities in relation to environmental conditions. The
researchers report on the existence of a distinct ice-covered bacte-
rial community with potentially unique metabolism compared
to during the ice-free period. Further, in this issue, Huang et al.
(2020) explored bacterial diversity associated with the rhizo-
sphere of macrophytes. SSU rRNA-based investigations can pro-
vide clues about important biogeochemical roles played by
aquatic microbes. Moreover, in this issue, Duret et al. (2020)
investigated the eukaryotic diversity on marine particles using
SSU rRNA genes and suggest an important role of heterotrophic
protists in remineralization of particles at depth. Although SSU
rRNA surveys continue to provide insight intomicrobial diversity
and processes in aquatic ecosystems, with the potential to study
temporal and biogeographic patterns in detail, the approach
clearly misses the functional aspect of all the taxa detected. It is
also limited in its ability to resolve finer-scale phylogenetic diver-
sity that in many cases is relevant for both function and
population-level evolution questions (Jaspers and Overmann
2004; Hahn and Pockl 2005; Hahn et al. 2016).

Moving beyond taxonomic composition to see what
microbiomes can do

Compared to SSU rRNA-based and other single marker gene
approaches, a community-wide genome-level analysis provides
both taxonomic and functional inventories of microbial assem-
blages. Many analytical approaches for generating information on
community structure and function from metagenomic data exist
and their applicability depends in large part on the study goals
(Quince et al. 2017). Early landmark work such as the discovery of
proteorhodopsin (Beja et al. 2000) in the ocean used cloning of
large genomic fragments followed by screening and comparatively
laborious Sanger sequencing. Although this method continues to
yield new discoveries (Weiland-Bräuer et al. 2017; Pushkarev et al.
2018), the majority of metagenomic work leverages “shotgun”
sequencing, which involves the direct and presumably
unbiased sequencing of small genomic DNA fragments extracted

directly from microbial assemblages. The posterior analysis of
metagenomes can broadly be catalogued into one of two classes:
(1) assembly-independent, gene-centric approaches and (2) assem-
bly-dependent, genome-centric approaches. Both are providing
metagenomic data sets that are a valuable resource for the aquatic
research community, when they are made available. Here we
briefly describe the approaches used to generate these data sets
and highlight their availability for those interested in gaining
access. We reiterate that much more comprehensive reviews on
the power and limitations of metagenomics already exist (Quince
et al. 2017), including a thorough comparison between assembly
independent and assembly-dependent approaches in (Dick 2018).

Assembly-independent approaches involve the generation
of phylogenetic and functional profiles (using metabolic func-
tions to describe communities) of a microbial community
through direct annotation of the short reads produced through
high throughput DNA sequencing technologies. Many compu-
tational tools exist to produce such profiles (Meyer et al. 2008;
Huson et al. 2016), and once generated the phylogenetic and
functional profiles can be statistically compared among differ-
ent microbial communities (Fasching et al. 2020; Orland et al.
2020). To facilitate such comparative studies, a number of open
source web applications provide automatic phylogenetic and
functional analyses of metagenomes and also serve as reposito-
ries for metagenome data. Examples include MG-RAST (Meyer
et al. 2008), IMG/M (Markowitz et al. 2013), and EBI MGnify
(Mitchell et al. 2017).

A limitation of assembly-independent gene-centric appro-
aches is a lack of information linking co-occurring metabolic
functions to particular microbial populations or taxonomic
groups. This limitation can be alleviated to some degree by
genome-centric metagenomic approaches, which are rapidly
becoming the standard of practice, largely due to innovations
in genome assembly algorithms capable of handling the data
sets emerging from current sequencing technologies. In
genome-centric approaches, short sequencing reads are assem-
bled de novo similar to whole-genome assembly of single
organisms (Ayling et al. 2019). However, owing to the unique
challenges associated with the high microdiversity of micro-
bial communities and the resulting metagenome complexity,
the result is potentially millions of contigs rather than com-
plete genomes. Which contigs belong to the same genome, or
even how many genomes are present, is unknown to the user.
Hence the next step typically is to link contigs back to the
genomes from which they are derived using contig “binning”
approaches. These approaches are based on intrinsic genomic
characteristics or the distribution and abundance of contigs
across metagenome samples (Strous et al. 2012; Kang et al.
2015). The approach works particularly well with samples col-
lected across space and time (Bendall et al. 2016; Colatriano
et al. 2018). The output of assembly and binning workflows
are metagenome-assembled genomes (MAGs). Careful curation
of automatically generated MAGs is essential to avoid spurious
interpretations based on cross-assembly and cross-binning of
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contigs and numerous programs are available to aid the user
in this process (Eren et al. 2015; Parks et al. 2015). Additional
challenges associated with assembly-based approaches are dif-
ficulties in differentiating between closely related taxa, and
assembly of MAGs from rare taxa. For the former challenge,
emerging long-read sequencing technologies used in combina-
tion with short read technology have a high potential to
improve MAG fidelity (Mantere et al. 2019).

Ultimately, and as we will highlight in the following sec-
tions, MAGs are a potent genomic resource for inferring
metabolism of uncultured microbial groups, as well as for
investigating aspects of community ecology, evolution, and
biogeochemical processes. In addition to MAGs, advances in
single-cell genomic approaches have also proven to be
immensely powerful (Bowers et al. 2017; Seeleuthner et al.
2018). Single cell genomics involves the isolation of single
cells by flow cytometry or other separation methods (micro-
fluidics or single cell micromanipulator picking), followed by
whole genome amplification, DNA sequencing, and assembly
(Blainey 2013; Stepanauskas et al. 2017). The results are
single-cell amplified genomes (SAGs). A benefit of single-cell
approaches is that they lend themselves to targeted organism
analysis, including rare taxa that may be missed by MAG-
based analyses. Cell selection for DNA sequencing can be
performed by picking single cells based on morphological or
metabolic traits or by screening flow cytometry sorted cells by
PCR for a particular phylogenetic or functional group of inter-
est. Overall, MAGs and SAGs are data sets that capture the
genomic content of naturally occurring populations and are
proving to be an important and useful resource, particularly
when used in combination to leverage each method’s
strengths. MAGs seem to recover more complete genomes
while SAGs provide nearly complete confidence in gene co-
occurrence within an individual genome. Numerous MAG
and SAG reference datasets of prokaryotes from marine
(Delmont et al. 2018; Tully et al. 2018), estuarine (Alneberg
et al. 2018), and freshwater systems (Linz et al. 2018) now
exist and are publicly available to the research community.
We note, however, the need for a centrally hosted and curated
database of genomes with carefully assigned phylogenetic
placement similar to the 16S rRNA based “FreshTrain”
(Rohwer et al. 2018). Such a resource is currently in develop-
ment for freshwater systems and is already available for spe-
cific water bodies such as the Baltic Sea (Alneberg et al. 2018).

Moving beyond functional potential to see what
microbiomes are doing

Genome information for populations within aquatic commu-
nities provides extraordinarily valuable insights into the func-
tional potential of those populations. However, this does not
provide key information about which taxa and metabolisms
are active in an ecosystem. An approach to move one step closer
to this “holy grail” information is through community gene
expression (i.e., metatranscriptomics) and protein expression

(metaproteomics) analyses. Metatranscriptomic methods target
the pool of expressed genes in a sample by sequencing reverse-
transcribed mRNA. Transcripts can be annotated de novo without
mapping to reference genomes, and this has provided our first
glimpses into community-level expression (Haruta et al. 2009; Shi
et al. 2011; Stewart et al. 2011; Hu et al. 2018). Metaproteomics
methods involve the identification of expressed proteins by mass
spectrometry analysis of peptides followed by searching peptide
spectra against reference genome databases (Colatriano andWalsh
2015). Both methods are intimately linked to metagenomics and
now that ample MAGs and SAGs are available, a more organism-
centric approach for investigating gene andprotein expressionpat-
terns is possible (Aylward et al. 2015; Tran et al. 2018). In this issue,
Linz et al. (2020) nicely demonstrate that metatranscriptomics
holds great promises for a more meaningful interpretation of
(meta)genomic content and our ability to link to biogeochemical
processes at an ecosystem scale. These techniques are not without
their limitations, since the results still cannot directly produce reac-
tion rates or even truly quantitative estimates of pathway activity
due to post-transcriptional regulation, other ways that organisms
control fluxes through pathways, and that activities ultimately
depend on the availability of substrates in the environment. Thus,
targeted metabolic measures, in particular those at the single cell
level (e.g., with NanoSIMS, Raman microscopy, and micro-
autoradiography), will be powerful to use in combination.

Recent insights in aquatic microbial ecology and
biogeochemistry driven by metagenomics

Metagenomics has enabled unprecedented insights into
aquatic microbial diversity. Compared to now, past studies were
limited in their scope due to the sequencing costs and chal-
lenges associated with data analysis, making the approach
available to a restricted number of specialized laboratories.
However, metagenomics can now be considered a mature and
broadly accessible technology. Moving forward, a primary goal
will be to leverage metagenomic data to further link biogeo-
chemical processes with the ecological and evolutionary
dynamics of microbial populations, as has been recognized in
the past (Oremland et al. 2005). The quality and significance of
insights obviously relies on the clarity of the question posed,
the generation of testable hypotheses, appropriate experimental
design and metadata collection as well as use of advanced sta-
tistical tools. In the following section, we highlight recent
metagenomics-enabled studies that are moving our understand-
ing of microbial contributions to aquatic systems forward, with
focus on those studies included in this special issue.

Expanding the known phylogenetic and metabolic
diversity of aquatic microbes

A classic contribution of metagenomics is the relentless dis-
covery of unexpected phylogenetic and metabolic diversity in
microbial systems. Examples include the discovery of
rhodopsin-based phototrophy in the surface ocean (Beja et al.
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2000), a capacity for ammonia oxidation in marine archaea
(Hallam et al. 2006), and sulfur oxidation in abundant oxygen
minimum zone bacteria (Walsh et al. 2009). In freshwater, a
putative role of freshwater bacteria in extracellular electron
transfer was based on MAG and SAG analysis (He et al. 2019).
As example in this special issue, Rasigraf et al. (2020) provided
a first description of microbial communities in sediments of the
brackish Bothnian Sea. The researchers first employed 16S rRNA
gene analysis to show strong vertical stratification of the bacte-
rial and archaeal communities in sediments. The taxonomic
profile was then used to guide a MAG-based analysis of micro-
bial metabolism in the iron-rich sediment layer.

Recent studies continue to provide surprising, significant, and
new phylogenetic and metabolic bacterial and archaeal diversity.
For example, bacterial MAG reconstructions from deep aquifers
and other environments has dramatically increased known phy-
lum level diversity by discovery of the Candidate Phylum Radia-
tion within the bacterial domain (Brown et al. 2015; Hug et al.
2016), and a revised phylogeny of bacteria (Parks et al. 2018). Sim-
ilarly, the reconstruction of archaeal MAGs from aquatic sedi-
ments lead to the discovery of the Asgard Archaea, which
potentially represent the closest archaeal ancestors of eukaryotes
(Zaremba-Niedzwiedzka et al. 2017; Bulzu et al. 2019). The Asgard
harbormany genes previously thought to be unique to eukaryotes
and their discovery has necessitated nothing less than a res-
tructuring of the universal tree of life (Spang et al. 2015; Castelle
and Banfield 2018).

In addition to revealing the expansive phylogenetic diversity
of microbial communities, recent analyses of MAGs and SAGs
from aquatic ecosystems continue to update our knowledge on
metabolic capacities. In some cases, these studies have provided
the first insights into the metabolism of uncultivated lineages,
with important biogeochemical ramifications. For example, the
marine SAR202 clade in the phylum Chloroflexi is an enigmatic
groupof bacteria described over 15 yr ago to be common through-
out the world’s ocean (Morris et al. 2004), but itsmetabolic capac-
ity remained unknown. Analysis of SAGs and MAGs have now
implicated SAR202 in the oxidation of recalcitrant organicmatter
(Landry et al. 2017) and sulfur turnover (Mehrshad et al. 2018a)
in the deep ocean, as well as terrestrial organicmatter degradation
in the Arctic Ocean (Colatriano et al. 2018). Likewise, recent stud-
ies have implicated uncultivated Chloroflexi lineages in dissolved
organic nitrogen cycling, metabolism of one-carbon compounds
and general carbon flow in lake hypolimnia (Denef et al. 2016;
Mehrshad et al. 2018b). Such examples of descriptive discoveries
that link metabolic pathways to particular phylogenetic groups
generate many hypotheses, informing experiments to investigate
metabolism and physiology of uncultured taxa.

Metagenomic studies have also redefined the ecological niches
of specific microbial taxa and implicated them in important bio-
geochemical transformations. For example, marine SAR11 bacte-
ria, which can comprise half of all bacterial cells in the oxic
surface ocean (Giovannoni 2017), were recently shown to include
lineages with a potential for anaerobic respiration using nitrate as

electron acceptor (Tsementzi et al. 2016). In this elegant study,
the nitrate reductase geneswere experimentally verified to encode
proteins catalyzing the first step of denitrification, using heterolo-
gous expression and activity assays. These SAR11 lineages are
common in marine oxygen minimum zones, where they may
play a major role in ocean nitrogen loss, and the results basically
redefined the ecological niches of one of the ocean’s most abun-
dant bacteria. Additionally, recent examples include the discovery
of nitrogen fixation pathways in MAGs from surface ocean het-
erotrophs, including Planctomycetes (Delmont et al. 2018). In
this issue, Xing et al. (2020) further implicate Planctomycetes in
nitrogen cycling through the identification of nitrate reductase
operons in MAGs from an alpine monomictic lake sampled dur-
ing the holomictic period.With the availability of extensiveMAG
and SAG collections, the ecological niches of aquatic microbial
assemblageswill continue to be refined.

In addition to revealing metabolic features of bacteria and
archaea, metagenomics and metatranscriptomics are promising
tools to explore the evolution, ecology, and physiology of
microbial eukaryotes through gene content (Caron et al. 2017).
The activity and function ofmicrobial eukaryotes in natural eco-
systems is not based on a large flexibility of their metabolic
capacities, as characteristic of prokaryotes, but on the explora-
tion of innovations in their structural complexity (larger sizes,
multicellularity, outer structures) and behaviors (motility and
chemotaxis, phagocytosis, interactions; Keeling and Campo
2017). Thus, we do not expect metagenomics to reveal many
fundamentally novel metabolic pathways within eukaryotes.
Nevertheless, there are several eukaryotic metabolisms that can
indeed be targeted through metagenomics. Examples are the
search of genes involved in photosynthesis, genes for digestive
enzymes that participate in phagocytosis, or genes encoding
rhodopsins that can be involved in sensing the environment or
act as proton pumps to produce energy or to acidify food vacu-
oles. In addition, fungi are being increasingly recognized as
common in aquatic microbiomes and may harbor previously
underexplored metabolic capabilities and genes (Grossart et al.
2019). Metagenomics can identify these genes in natural assem-
blages (Carradec et al. 2018), and reference genomes are then
needed to assign the different versions of the same gene to a
given eukaryotic species. As in prokaryotes, a large share of the
microbial eukaryote diversity is uncultured, and a very success-
ful way to recover genomic information from uncultured taxa is
by single cell genomics (Yoon et al. 2011;Mangot et al. 2017). In
this issue, Labarre et al. (2020) show an example of combining
metatranscriptomics and single cell genomics to identify a set of
genes putatively associated to phagocytosis that are actively
expressed in heterotrophic uncultured microbial eukaryotes
growing by bacterivory.

Illuminating community assembly rules for aquatic
microbial systems

In addition to being critically important for ecosystem
function, aquatic microbial communities are excellent model
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systems for learning fundamental principles of community
assembly and dynamics. In general, the field of community
ecology seeks to understand the drivers and processes of com-
munity assembly that produce community structure patterns
across space and time (Roughgarden 2009). Questions in this
field are most often addressed from a taxonomic perspective
where the distribution of species is the focus of analyses,
although functional trait-based perspectives are also com-
monly employed (Weithoff and Beisner 2019). In microbial
community ecology, the immense phylogenetic diversity of
microorganisms and the relatively poor understanding of
many taxon-specific traits represent considerable challenges to
interpret community membership patterns and their func-
tional implications (Krause et al. 2014; Hall et al. 2018). Func-
tional community profiling using metagenomics is therefore
useful because it can (1) simplify microbial systems to levels
more amenable to statistical analysis and modeling, and
(2) reveal community functional patterns across environmen-
tal gradients that may be easier to interpret from a biogeo-
chemical perspective.

A useful conceptual framework that originated in macrobial
ecology recognizes four processes in community assembly:
selection, drift, dispersal, and diversification (Vellend 2010).
These processes are widely recognized to be important in the
assembly of microbial communities (Nemergut et al. 2013)
and their strengths in shaping both taxonomic and functional
composition in different microbial groups, systems, and scales
can be investigated using metagenomic profiling. In this spe-
cial issue, Wang et al. (2020b) compared the assembly pro-
cesses shaping bacterial and archaeal communities in a
subtropical river-bay system using SSU rRNA gene analyses.
The authors report that deterministic (i.e., selective) processes
were more pronounced than stochastic processes (i.e., drift) in
shaping bacterial and archaeal communities, and that salinity
and water temperature were significant drivers of community
assembly. This study et al highlight that environmental
drivers are important in shaping microbial community assem-
bly (Bachmann et al. 2018).

In addition to the abiotic environment, biotic interactions are
important in structuring microbial communities (Biži�c-Ionescu
et al. 2018). With respect to ecosystem function, the biological
interactions between phytoplankton and bacteria represent one
of the most important ecological relationships in aquatic envi-
ronments. These interactions range from competitive to coopera-
tive. At a basic level, the phytoplankton–bacteria relationship is
based on resource provision. Bacteria can obtain a large amount
of their carbon requirement directly from phytoplankton
(Morán et al. 2002). On the other hand, bacteria provide limiting
nutrients such as N and P, vitamins and growth factors to phyto-
plankton via remineralization and biosynthesis (e.g., Cole 1982).
Underlying this simple scenario though are numerous known
and unknown specific phytoplankton-bacteria interactions
(Amin et al. 2012; Seymour et al. 2017; Zoccarato and Grossart

2019). Evidence for the selective association between bacteria
andphytoplankton is the consistent detection of certain bacterial
taxa in association with phytoplankton (cultures and natural
blooms). This interaction through nutrient cycling explains the
observed tight coupling between phytoplankton productivity
and bacterial abundances at large spatial and temporal scales
(Ducklow 1999). Time series studies on short temporal scales
have also been important in revealing the interactions between
phytoplankton and heterotrophic bacteria (Aylward et al. 2015).
An example is included in this special issue by Linz et al. (2020).
In this study, the researchers used metatranscriptomics to report
diel changes on gene expression on three whole freshwater com-
munities of different trophic state. They report clear diurnal tran-
scription trends for genes related to photosynthesis, sugar
transport, and carbon fixation. Photosynthesis genes are highly
expressed during the day, while the expression of genes for sugar
transport occurs typically a few hours later. This study demon-
strates howmeta-omics approaches can provide valuable mecha-
nistic information on metabolic interactions between
phototrophs and heterotrophic bacteria important to carbon
cycling in aquatic ecosystems.

In recentyears, therehasbeenagrowingawareness thatbacte-
ria showawide rangeof beneficial interactions, evencooperative
behaviors in which one population helps another at a potential
cost to itself (D’Souza et al. 2018). An example is “public goods,”
which are metabolites that are costly to produce yet are released
into the environment and available to other populations such as
iron scavengingmolecules. Such interactions can involve differ-
ent populations that reciprocally exchange metabolites such as
sugars, amino acids, and growth factors (Garcia et al. 2018). In
some cases, these synergies have been shown to emerge through
direct complementation of metabolic repertoires such as amino
acidauxotrophy inmethanogenic consortia (Embreeet al. 2015).
A survey of metabolic exchange in hundreds of communities
showed metabolic complementarity is common in natural
communities (Zelezniak et al. 2015). In this issue, Fernandez
et al. (2020) reportmetagenomic evidence in support of a bene-
ficial interaction involvingmetabolic exchangebetweennitro-
gen fixing bacteria andmethanogenic archaea that is based on
thesupplyofbioavailablenitrogeninexchangeforcarboncom-
pounds produced by the methanogenic assemblages. Hooker
et al. (2020) investigate bacterial interactions associated with
Microcystis, while Wang et al. (2020a) used a combination of
SSUrRNAandfunctionalgeneprofilingto investigatemicrobial
community assembly and biotic interactions that differ
between macrophyte and phytoplankton dominated regimes
in a shallow lake. The researchers describe a combination of
complex biological interactions that differentially shape the
taxonomicandfunctional compositionof the twosystems.The
emergence, ecology, and evolution of microbial interactions
deserve increasing attention, especially as they relate to
structure–function relationships and govern biogeochemical
processes.
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Relationships between taxonomic and functional profiles
An additional important ecology concept that has recently

been addressed using metagenomic approaches is the role of
functional redundancy in shaping microbial communities.
Functional redundancy refers to when the same metabolic
function is present in multiple coexisting taxonomically dis-
tinct organisms (Louca et al. 2018). The case for functional
redundancy is often made through comparison of taxonomic
and functional profiles along spatial and temporal gradients.
Such profiles are typically strongly correlated across intense
transition zones, such as along redox gradients (Stewart et al.
2011) or oceanic depth profiles (DeLong 2006; Hu et al. 2018).
Here, there is strong partitioning of metabolic guilds
(e.g., phototrophs, obligate aerobes, denitrifiers, or meth-
anogens) based on resource availability or thermodynamic
constraints. As different taxonomic groups contribute to dif-
ferent metabolic guilds, structured functional profiles are
expected to have underlying taxonomic profiles. This has
been generally found in a recent study involving coastal
microbial eukaryotes (Ramond et al. 2019). In this issue,
Fasching et al. (2020) compared microbial assemblages in
streams that differed in their catchments by land use type:
agriculture, forested, or wetland. Consistent profile trends
were observed across streams and certain functions were asso-
ciated with different land use: labile DOM (agriculture), func-
tions related to monomer uptake and carbohydrates (forest),
and functions related to nitrogen metabolism and processing
of aromatic carbon compounds (wetlands). These results sug-
gest that land use influences both the taxonomic and func-
tional composition of stream communities and hence their
contributions to biogeochemical processes.

In contrast, in some systems such as the surface ocean,
functional composition tends to be far more stable than taxo-
nomic composition, suggesting functional redundancy (Louca
et al. 2016b), although the degree of functional redundancy is
debated (Galand et al. 2018). As an extreme example of func-
tional redundancy, oxygenic phototrophy is common to all
regions of the ocean, but the taxonomic composition of phy-
toplankton varies tremendously (Litchman and Klausmeier
2008). Therefore, when comparing communities, the consis-
tency between taxonomic and functional composition
depends on the relative importance of mechanisms selecting
for specific functions vs. mechanisms causing substantial vari-
ation within functional groups. This idea is well illustrated by
the study contributed to this special issue by Orland et al.
(2020). Here the researchers experimentally investigated the
influence of resource availability (terrestrial organic matter)
and environmental conditions (different lakes) on the assem-
bly of sediment microbial communities. Taxonomic dissimi-
larity between lakes was observed while functional profiles
based on genes for terrestrial organic matter transformations
were more similar, suggesting a degree of functional redun-
dancy in the terrestrial organic matter degrading communi-
ties. Understanding the degree to which whole microbial

communities, as well as specific metabolic groups, display
functional redundancy is critical in assessing and predicting
the biogeochemical implications of microbial dynamics in a
changing environment.

In this special issue, one study demonstrates the insights that
can be gleaned when analyses address factors shaping the com-
position within a particular functional group. Larkin et al.
(2020) suggest that marine picophytoplankton (Prochlorococcus)
populations (microdiverse haplotypes) are so exquisitely
adapted to environmental conditions that their distributions
can reveal subtle biogeochemical variability in the ocean. Over-
all, the distinction between the taxonomic and functional struc-
ture of the entire community, as well as the finer scale diversity
within functional groups can provide valuable insights into fac-
tors shaping the assembly, composition, and ultimately func-
tion of microbial communities. This is crucial to project future
changes in bacterial community composition and their related
functions in a rapidly changingworld.

Assessing microbial responses to climate change, land use,
and pollution

Climate change is motivating much of the ecological
research focused on linking microbial community dynamics
to biogeochemical processes (Hutchins and Fu 2017).
Although all aquatic ecosystems will be impacted to some
extent, those at high latitudes such as in the Arctic are particu-
larly vulnerable to change since warming is occurring 2–3
times more rapidly than the global average (IPCC 2007).
Warming is leading to increased permafrost melt and precipi-
tation in terrestrial environments (Vonk et al. 2012; Bintanja
and Andry 2017), as well as freshening and warming of the
Arctic Ocean (Carmack et al. 2016), with a myriad of potential
effects on microbial ecosystem structure and biogeochemical
processes (Li et al. 2009; Vincent 2010). Over the past few
years, well-designed SSU rRNA and metagenomic studies are
beginning to focus on understanding the taxonomic and
functional composition of Arctic freshwater (Crevecoeur et al.
2015; Woodcroft et al. 2018) and marine ecosystems (Comeau
et al. 2011; Yergeau et al. 2017). In some cases, these studies
represent the first descriptions of important aquatic systems.
For example, Colatriano et al. (2018) provided the first refer-
ence MAG data set for the Arctic Ocean, while in this issue
Ruuskanen et al. (2020) generate an important MAG reference
data set from sediment bacterial communities of Lake Hazen,
a large high-Arctic lake. In the Lake Hazen study, they describe
several genomic adaptations to life at low temperature and oli-
gotrophic conditions. MAG data sets such as these serve as
important baseline for studying temporal changes. In a related
study in this issue, Peura et al. (2020) studied the genetic
potential of microbial communities to biodegrade recently
mobilized permafrost carbon in 12 thermokarst ponds rep-
resenting three different stages of pond succession. The
authors found a clear change with pond succession in the
properties of the DOM pool and in the number of carbon
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degradation genes in ponds of different successional age. As
change continues, metagenomic time-series data sets in com-
bination with experimental manipulations and modeling will
be essential in understanding impacts in the Arctic, as well as
in other sensitive ecosystems.

In addition to global changes such as atmospheric
warming, land use is an important anthropogenic impact that
is having profound regional effects on coastal marine and
freshwater communities and biochemistry (Camargo and
Alonso 2006; Breitburg et al. 2018). As such, ecological ques-
tions on the influence of land use on aquatic microbial com-
munities are also receiving growing attention. Several case
studies incorporating metagenomics are presented in this spe-
cial issue. Fasching et al. (2020) used weighted gene co-
occurrence network analysis of rivers and identified specific
clusters of functions related to DOM composition and land
use. This study indicates distinct changes in the functional
composition and loss of functional diversity of microorgan-
isms when comparing natural to agricultural catchments.
Kleinteich et al. (2020) studied the unintentional release of a
large amount of ammonia nitrate into a river system, which
resulted in a massive phytoplankton bloom. SSU (16S rRNA
and 18S rRNA) sequencing showed that bacterial and eukary-
otic richness was reduced and community composition chan-
ged during the bloom, concluding that N pulses can have a
significant effect on river communities even of naturally
eutrophied water bodies. Bier et al. (2020) investigated the
influence of coal mine pollutant on benthic stream communi-
ties using metagenomics, qPCR, and enzyme assays. They
show that functional genes and pathways of microbial com-
munities growing in mine effluent differ in composition, but
not diversity. Thereby, the majority of functional genes and
pathways that changed decreased at sites exposed to mine
effluent indicating a severe effect of coal mine pollutants on
microbial composition and ecosystem functions. Additional
studies in this special issue related to pollution include an
investigation of microbiomes associated with microbial mats
in Australia (Mendes et al. 2020) as well as an investigation of
marine organisms potentially involved in mercury transforma-
tion in the ocean (Bowman et al. 2020). In moving forward, a
combination of environmental metagenomic surveys and
experimental manipulations of pollution exposure should pro-
vide important insights into microbial responses to human
influences on aquatic systems.

Evolutionary metagenomics
Metagenomics also enables investigation of evolutionary

dynamics in microbial assemblages, in the context of ecologi-
cal interactions. Previously, genome studies of closely related
strains of bacteria and archaea have documented a high degree
of genomic diversity, leading to the concept of the core and
flexible genome (Cordero and Polz 2014). The core genome
includes the genomic regions shared by a set of strains, while
flexible genomes are comprised of regions that can vary in

their distribution across strains. The ecological and functional
relevance of such genomic variation has been the focus of a
significant amount of recent research in aquatic microbiology.
On one hand, MAGs and SAGs provide a window into the nat-
urally occurring genome diversity of microbial populations.
On the other, metagenomics provides a method to quantify
the distribution and relative abundance of genomes (or parts
of genomes) in the environment by fragment recruitment
analyses.

Through precise tracking of populations, the ecological role of
genome variation in general and the flexible genome in particular
can be linked to niche partitioning of microbial genotypes. For
example, Prochlorococcus, an abundant phototroph in the surface
ocean has been shown to be comprised of numerous ecological
populations that exhibit niche-partitioning based on light and
nutrient availability (Biller et al. 2015). A study of Prochlorococcus
SAGs provided evidence for hundreds of populations, differenti-
ated by distinct genomic backbones (i.e., core genomes) linked to
small sets of distinct flexible genes (Kashtan et al. 2014). Through
a combination of metagenomics it was shown that environmen-
tal variation shapes the functional capacity and ecosystem role of
Prochlorococcus (Kent et al. 2016). (Delmont and Eren 2018) linked
metagenomes to Prochlorococcus genomes to show that closely
related high-light populations exhibited variation in relative
abundance linked to a few gene clusters. Similar genome ecology
has been investigated for marine heterotrophs. For example,
marine Alteromonas genome diversity is characterized by flexible
genome regions. Interestingly, the flexible regions contain strain-
specific glycosidic receptors that are exchanged by homologous
recombination driven potentially by phage infection (López-
Pérez and Rodriguez-Valera 2016). In freshwaters, (Bendall et al.
2016) showed selective sweeps of whole genomes and genomic
regions within populations through time-series metagenomic
analyses. MAGs and SAGs have also revealed unusual genome
diversity in specific assemblages. For example, Ionescu et al.
(2017) showed an exceptional degree of genome variation in
Achromatium cells possessing multiple genome copies per cell.
These studies demonstrate how systematic metagenomics analy-
sis of microbial populations drives deeper insights into mecha-
nisms underlying the evolutionary dynamics of microbial
assemblages.

Future outlooks
Experimental manipulations to test hypotheses

Although observational studies are necessary first steps for
revealing patterns in microbial biogeography and dynamics,
experimental approaches are equally important as they are more
amenable to hypothesis testing (Fig. 1). A large amount of meta-
genomic work relies on correlation-based analyses that relate one
set of observations (e.g., gene profiles) to another (e.g., water
chemistry), at the expense of uncovering mechanisms. On the
other hand, manipulation experiments offer the potential for
highly controlled mechanistic insights into relationships
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between a driver and response, but perhaps at the cost of ecologi-
cal relevance. Thus, the next logical step for linking microbial
composition with biogeochemical processes is to design specific
experiments to test hypotheses formulated based on meta-
genomic profiling (Krempaska et al. 2018). Recent exemplarily
experimental approaches include assessment of functional
redundancy along environmental gradients using mesocosms
(Beier et al. 2017), microbial colonization of phytoplankton
using an innovative flow-through incubation system (Biži�c-
Ionescu et al. 2018), and nutrient limitation inmicrobial systems
using on-ship bottle experiments (Bertrand et al. 2015). We
expect that studies combiningmetagenomics withwell-designed
ecological experiments will soon provide much insight into the
natural dynamics, complexity, and function of aquatic microbial
communities.Moreover, such studies are becomingmore feasible
as sequencing costs continue to decline, allowing experimental
designs to testmultiple factors with suitable replication.

In this issue, a number of exciting experimental studies of
biogeochemical processes that incorporate metagenomic ana-
lyses are included. In an elegant study, Bulseco et al. (2020)
investigated the influence of increased nitrogen availability on
salt marsh communities by coupling metagenomics with bio-
geochemical rate measurements. The authors show that
underlying metabolic pathways can be linked to geochemical
rates with important consequences for carbon and nitrogen
cycling in coastal systems. Also in this special issue, Martiny
et al. (2020) aimed to understand how phytoplankton adapt
to differences in phosphate availability and the implications
for nutrient uptake rates using a combination of transplant
experiments and metagenomics to link genes with marine bio-
geochemistry. They show that changes in community compo-
sition and functional genes have an important effect on
nutrient uptake and regulation of biogeochemistry processes.
This study demonstrates how a clever combination of experi-
ments and metagenomics provides a better understanding of
the relative role of environmental conditions vs. microbial
diversity in driving important ecosystem processes in pelagic
systems.

Integrating meta-omics and microbial systems modeling
Researchers working onmicrobiomes in many diverse ecosys-

tems, including aquatic, often express interest in “modeling”
microbial communities (Follows and Dutkiewicz 2011; Kreft
et al. 2017). What do we mean when we talk about such models
and how do ’omics methods advance our ability to develop and
apply them? It is important first to be clear about the purpose of
microbiomemodeling. Is the aim to learnmore about the subcel-
lular fluxes through metabolic pathways for individual taxa, in
order to infer substrate usage preferences or reveal unaccounted
for types of metabolism? Do we want to model community
dynamics using ’omics-informed traits and structured equations
that capture some level of mechanism (e.g., Monod-type growth
kinetics), to see how well these predictions capture our observa-
tions? For the latter, would statistical modeling with minimal

explicit mechanism be sufficient? Is our goal to incorporate
microbes into ecosystem-level process models to better under-
stand carbon and nutrient cycling, or to eventually scale up to
global climate models? Do we want to forecast cyanobacterial
blooms? We note that many people assume that models are pri-
marily used to forecast. However, models are in fact most useful
to learn about a system of interest because they often reveal
knowledge gaps when they fail to represent observed data. The
primary take-away message is the need to be more explicit about
our research questions before embarking on whatever kind of
model (of which there are many) we choose. There is no doubt
thatmetagenomics can drive advances in this area.

One common kind of model used to interpret ’omics data are
a conceptual metabolic reconstruction based on annotations of
genes and pathways predicted to be present in a (meta)genome.
These are frequently presented as a cell cartoon showing box-
and-arrow pathways with a focus on central carbon and energy
metabolism, nitrogen, and phosphorus transformations, and
transporters used to move substrates into or out of the cell. Such
diagrams are preparedmanually by inspecting gene annotations,
often with assistance from software that projects predicted
functions onto pathway maps, such as MetaPathways (Konwar
et al. 2015) and KEGG (Kanehisa et al. 2019). The metabolic
reconstructions can be further investigated to identify nutrient
requirements and substrates thatmust be acquired from the envi-
ronment, using a reverse ecology technique (Hamilton et al.
2017). An often ignored, but serious issue with such modeling
approaches is that compared to themillions of proteins that have
been identified in genomes, only a small percentage have been
functionally studied (Chang et al. 2016). Hence there is an urgent
need to close the sequence-to-function gap inmicrobiology if we
are tomodelmetabolismbased on ’omics data (Price et al. 2018).

Studies based on SSU rRNA gene sequencing approaches often
include a modeling component, often in the form of statistical
approaches that correlate the relative abundance of individual
taxa to each other or to abiotic environmental parameters
(Fuhrman et al. 2006; Gilbert et al. 2011). Simple correlation can
also be used to create models of community membership turn-
over (Herren and McMahon 2018). Although correlation-based
models suffer from limitations (Weiss et al. 2016; Coenen and
Weitz 2018; Hirano and Takemoto 2019), not least from the chal-
lenges of working with relative abundance data, they are often
powerful in their simplicity and provide opportunities to generate
hypotheses about taxon–taxon interactions, individual lineage
lifestyles, and ecophysiology. Phytoplankton community
dynamics modeling is a rich field of study, pushing the bound-
aries of traditional differential-equation models to include key
traits (Edwards et al. 2013). However, ’omics data is rarely, if ever,
used to inform these efforts. A few researchers have tried to repro-
duce bacterial community dynamics using structured equations
(Dam et al. 2016). The modeled population can be defined either
by taxonomic affiliation or by functional guild. Although also
well developed in some engineering fields (Henze et al. 2000),
much potential remains for suchmodeling to help us learn about
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aquatic microbial community assembly and dynamics. Individ-
ual-basedmodels are also occasionally used, with potential to cap-
ture individuality (i.e., each cell potentially behaving differently;
Hellweger et al. 2016). This area has only been minimally
explored thus far in aquatic ecosystems.

(Meta)genome informed modeling most often seeks to reca-
pitulate some pattern of community functional capacity to
biogeochemical transformations of interest to ecosystem-scale
science (e.g., respiration, denitrification, methanogenesis).
Most work thus far has taken a gene-centric approach, focus-
ing on marker genes that can serve as proxies for biochemical
pathways that are expected a priori to contribute to a biogeo-
chemical process of interest. This is particularly applicable to
microbial systems characterized by strong spatial or temporal
partitioning of biochemical functions such as the redox
gradients associated with oxygen depletion in marine oxygen
minimum zones (OMZ) or stratified lakes. As such, the first
gene-centric biogeochemical model that incorporated meta-
genomics was developed for the Arabian Sea OMZ (Reed et al.
2014). Model simulations supported previous observations
that denitrification, rather than anammox, was the dominant
N-loss pathway in the Arabian Sea. In a later study, a multi-
omics biogeochemical model was formulated for the red-
oxycline of an anoxic fjord (Louca et al. 2016a). The model
could reproduce the vertical profiles of biogeochemical rates
of denitrification and annamox as well as their associated
functional genes. Both studies also made predictions of previ-
ously unknown links between sulfur, nitrogen, and carbon
cycling in OMZs. These examples show that the incorporation
of meta-omics information in the formulation and validation
of biogeochemical models allows one to link biogeochemical
processes with microbial population dynamics.

Such integrated gene-centric modeling approaches provide
insights into microbial community metabolism and may allow
for prediction of nutrient and energy cycling in a rapidly chang-
ingworld. However, as in allmodeling approaches there are some
limitations. The approach lends itself well to modeling special-
ized chemolitho-autotrophs, where the reactions mediated by
the modeled organisms and the associate functional marker
genes are known a priori. Organotrophs that reside in an environ-
ment rich in organic compounds are much more challenging to
model as identifying metabolites is not straightforward, creating
difficulties with regards to thermodynamic calculations and
quantification of metabolites. Functional groups characterized
by high functional redundancy are also much more difficult to
model by such approaches. For example, photoautotrophs can-
not be differentiated by their energy source alone. The ecological
niches of these organisms are defined by multiple variables such
as light availability, temperature preferences, and supply of inor-
ganic nutrients. In general, these biogeochemical models do not
take into consideration other ecological or physiological factors
that determine the organism’s adaptive traits (e.g., cell size and
structure as well as pigmentation) and consequently distribution.
Ultimately, the power of thesemodeling approaches is limited by

the biogeochemical and physiological data derived from earlier
lab experiments onmainly cultured organisms and environmen-
tal data from observations. Yet, a systematic approach to study-
ing these controlling factors in a more holistic manner are
missing, but urgently needed to define ecological niches of
microorganisms and project future functional responses to a
changing environment.

Very few researchers have taken on the difficult task of syn-
thesizing the understanding gained from genome-resolved
approaches (MAGs and SAGs) with structured population and
geochemical modeling. One well executed study tackled the
distribution of key processes in the redox stratified waters of a
lake (Preheim et al. 2016; Arora-Williams et al. 2018). Here,
MAGs and 16S rRNA genes were recovered from a time series
collected in Upper Mystic Lake, used for metabolic reconstruc-
tions with a focus on genes involved in critical pathways such
as iron and sulfur cycles, and synthesized with a spatially
explicit biogeochemical model. The dream of many aquatic
microbial ecologists is to link this kind of organism-process
coupled model into three-dimensional hydrodynamic models
to most fully simulate the physical and chemical environment
experienced by microbes, while allowing for feedback of
microbial activities to the environment and other community
members. Again, many of us can identify with this dream, but
we must pause to ask: what is our question? Do we wish to
know how much organism X contributes to denitrification?
Do we want to know if microbes determine whether an
aquatic system is a net source or sink for carbon? Do we want
to learn more about our specific pet microbial group? Do we
yearn to convince our nonmicrobial colleagues that microbes
are important for global geochemical cycles? Perhaps all of the
above.

Outside the realm of aquatic sciences, systems biologists and
engineers have well developed strategies to create genome-scale
metabolic models (GSMMs), usually for single pure culture
organisms with some biotechnological value (Joyce and Palsson
2006). They include flux balance analysis (FBA) and metabolic
flux analysis, among others. These quantitativemodels are pow-
erful approaches for investigating the metabolism, physiology,
and response to growth conditions for single organisms or spe-
cies (Feist et al. 2009), but have only rarely been applied to mul-
timember groups other than heavily domesticated model
organisms (but see (Stolyar et al. 2007; Zhuang et al. 2011). FBA
are mainly used for individual (cultured) bacterial species, but
recently (Garza et al. 2018) combined GSMMs of individual bac-
teria with relative abundance of bacteria inferred from
metagenomes. This allowed them to reveal the metabolic status
of a given environment. Specifically, they inferred distinct met-
abolomes associated with different human body environments
that were consistent with their experimental data. As meta-
genomic analysis of whole microbial communities became fea-
sible, the development of GSMM-like modeling approaches for
quantitatively simulating microbial interactions is gaining
momentum (Zuñiga et al. 2017).
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Developing model organisms and systems
Ultimately our ability to interpret metagenomes and compre-

hend the ecological implications of microbial community com-
position depends on organism-centric prior knowledge of
genetics, biochemistry, and ecophysiology. Hence, there is a
need for future work to includemodel system development, with
either single representative taxa or simplified enrichment cul-
tures, to define ecophysiology and begin the more necessarily
reductionist work of linking genes to functions (Fig. 1). The
immensely successful combination of field-’omics with elegant
pure-culture work is best illustrated by the body of work sur-
rounding Prochlorococcus (Biller et al. 2015). But many other
abundant and cosmopolitan lineages are frustratingly resistant to
isolation. This also applies to several ecologically important
guilds ofmicrobial eukaryotes, such as the colorless bacterivorous
heterotrophic flagellates that are mostly composed of diverse
uncultured lineages generally exhibiting a widespread marine
distribution (Massana et al. 2014;Mangot et al. 2018).

Several recent breakthroughs in axenic prokaryotic cultivation
have occurred since the classic work targeting Pelagibacter in the
SAR11 clade (Rappé et al. 2002), including isolation of the fresh-
water SAR11 sister clade LD12 (Candidatus Fonsibacter; Henson
et al. 2018), Methylophilales members of the LD28 group (Can-
didatus Methylopumilus; Salcher et al. 2015) and members of the
recalcitrant acI lineage of actinobacteria (Kim et al. 2019). Com-
bined cultivation and metagenomic work focused on freshwater
polynucleobacter has also provided important insights into evo-
lution and ecological principles of this ubiquitous genus (Hahn
et al. 2016; Hoetzinger and Hahn 2017) Further testament to the
importance of pure cultures in aquatic microbiology is the
insightful research on nitrification by marine thaumarchaeota
(Santoro et al. 2019). Metagenomic surveys have shown archaeal
nitrification genes are widespread in the oceans (Mosier and
Francis 2011). However, pure culture work has provided numer-
ous insights into marine thaumarchaeal physiology that explain
their ecological success and biogeochemical relevance, including
an exceptionally high affinity for ammonia (Martens-Habbena
et al. 2009), the production of the greenhouse gas nitrous oxide
(Santoro et al. 2011), and other aspects of their metabolism
related to their role in marine carbon and nitrogen cycling
(Santoro et al. 2019). Another recent example testifying to the
power of pure cultures was the discovery of dimethylsulfonio-
propionate (DMSP) production inmarine bacteria and the identi-
fication of genes involved in the process (Curson et al. 2017).
DMSP is the most abundant organosulfur molecule on Earth and
is an important nutrient and signaling molecule that was
thought to be only produced by eukaryotes. The genes for DMSP
production were identified through genetic analysis. The key
gene (dysB) was then found to be widespread in marine
metagenomes suggesting marine bacteria contribute significantly
to marine DMSP production. This study exemplifies the impor-
tance of cultures to identify the genetic basis for a previously
undescribed metabolism, which can then inform metagenomic
studies on the distribution of ametabolic group across ecosystems.

In addition to pure isolates, the development of mixed cul-
tures as model systems can provide insights into the structure
and function of natural communities. On one hand, mixed cul-
tures enable cultivation of ubiquitous but hard-to-cultivate
microorganisms, typically because the members mutually satisfy
their respective metabolic dependencies (Garcia et al. 2015; Mu
et al. 2018). On the other hand, characterization of these meta-
bolic dependencies can reveal metabolic interactions potentially
occurring in the natural environment (D’Souza et al. 2018).
Recently, Garcia et al. (2018) cultured a mixed freshwater model
community to determine auxotrophy and intrapopulation com-
plementary in the community’s “interactome.” Thus, by com-
bining the relative simplicity of these model communities with
bioinformatics andmodeling tools, the complex nature ofmicro-
bial interactions can be investigated using the relevant model
communities. Another approach is to promote a given function
of interest in natural assemblages through simple community
manipulations. In this issue, Labarre et al. (2020) incubated a
two-trophic level microbial assemblage (bacteria and their preda-
tors) in the dark to promote bacterivory and study the expressed
genes related to phagocytosis in this simple set-up. Simplified,
mixed cultures, thus, are ideal to explore ecology, interactions
and genetic diversity of yet uncultured microorganisms. Mixed
cultures in combination with a whole array of genomic tools,
however, should be done in a systematic manner to better detect
generalities and patterns of metabolic functions in relation to
specific, simplified microbial communities, but also allow exten-
sion tomore complex, naturalmicrobial communities.

Concluding remarks
Microbial systems exhibit a vast multiscale structure, where

metabolism and biological interactions of single cells drive in
concert biogeochemical cycles of aquatic ecosystem with
potential consequences for global processes. No doubt, the
application of metagenomic approaches to investigations of
aquatic microbial assemblages are allowing numerous insights
into microbial community dynamics and biogeochemical pro-
cesses. In moving forward, we see a number of research ave-
nues that will contribute to our understanding of aquatic
systems across multiple spatial and temporal scales. For exam-
ple, ’omics data can be linked to “big data” such as remote
sensing or automatic profiler units with the outcome of relat-
ing microbial community composition and function to a
whole array of environmental variables at high and broad
temporal and spatial resolution (Buttigieg et al. 2018; Huot
et al. 2019). Together with machine learning approaches and
artificial intelligence methods, one may be able to unravel hid-
den patterns in the structure–function relationship of very
complex microbial communities and to elucidate the related
ecological consequences. Furthermore, in order to evaluate the
dynamics of key environmental drivers at the relevant spatial
and temporal scales, we propose to better link field studies
with targeted lab and mesocosm experiments extending from
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the microscale to the macro- and even global scale and from
seconds to minutes, up to days, weeks, months and even
years.

Several other obstacles need to be addressed to further our
interpretation of complex metagenomic datasets. For example,
defining more environmentally relevant model organisms is
needed to increase our functional understanding of aquatic
microbial communities. Moreover, the functions of many pro-
teins and even large protein families remain unknown. Although
functional characterization of proteins is difficult and laborious,
an increased effort for high throughput functional analysis of
uncharacterized proteins is urgently required. Finally, the clever
incorporation of new methods for studying cell physiology
(e.g., Raman-based spectroscopy, Nano-SIMS and others) in com-
bination with “omics” approaches will provide the required
methodological basis for an improved understanding of the
underlying organismic processes/mechanisms and their environ-
mental regulation. This knowledge is urgently needed for an
effective and sustainablemanagement of aquatic ecosystems tak-
ing the omnipresentmicrobial legacy into account.
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