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a b s t r a c t

Chinese forests, characterized by relatively young stand age, represent a significant biomass carbon (C)
sink over the past several decades. Nevertheless, it is unclear how forest biomass C sequestration capacity
in China will evolve as forest age, climate and atmospheric CO2 concentration change continuously. Here,
we present a semi-empirical model that incorporates forest age and climatic factors for each forest type
to estimate the effects of forest age and climate change on total forest biomass, under three different sce-
narios based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). We estimate that
age-related forest biomass C sequestration to be 6.69 Pg C (�0.17 Pg C a�1) from the 2000s to the 2040s.
Climate change induces a rather weak increase in total forest biomass C sequestration (0.52–0.60 Pg C by
the 2040s). We show that rising CO2 concentrations could further increase the total forest biomass C
sequestration by 1.68–3.12 Pg C in the 2040s across all three scenarios. Overall, the total forest biomass
in China would increase by 8.89–10.37 Pg C by the end of 2040s. Our findings highlight the benefits of
Chinese afforestation programs, continued climate change and increasing CO2 concentration in sustaining
the forest biomass C sink in the near future, and could therefore be useful for designing more realistic
climate change mitigation policies such as continuous forestation programs and careful choice of tree
species.

� 2018 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

The biomass carbon (C) sequestration capacity of forests is of
great interest for mitigation of global warming [1–3], given that
forests store about 45% of the C in the terrestrial biosphere [4]
and their C uptake could effectively and economically offset fossil
fuel C emissions [5–8]. Much knowledge has been acquired about
the forest C cycle [1,9,10], but large gaps still remain. One particu-
lar area of uncertainty is the estimation of forest biomass C seques-
tration capacity in the near future in China. Large-scale
afforestation and reforestation programs have been implemented
in China since the 1970s [11], and China now has a larger area of
plantation forest than any other country [12]. According to the
8th Chinese forest inventory statistics [12], the percentage of forest
cover has steadily increased from 12.70% in the early 1970s to
21.63% in 2009–2013. These forests are characterized by young
forest age structures and relatively low biomass C density [2,13–
15]. For example, the mean forest age in China was estimated to
be �40 years in the 2000s [16] and the mean forest biomass C den-
sity recorded in the latest national inventory statistics was <50 Mg

C ha�1 [14]. These values are much lower than those for forests at
similar latitudes in the United States where the aboveground bio-
mass C density is �88 Mg C ha�1 [17,18]. This characteristic young
forest age structure suggests a large C sink capacity for the future
in China, as forest biomass C accumulation generally increases
with tree age and size [19,20]. Several recent studies have
attempted to quantify the magnitude of future forest biomass C
storage in China by using ground-based field measurements [21–
24] and model simulations [25–27]. To simulate the trajectories
of forest biomass changes with stand age, a general idea is to con-
struct a relationship between forest biomass increment and forest
age (as a proxy for forest development [18]). However, the previ-
ous studies do not generally consider the effects of forest demo-
graphic processes, such as age-related growth, or changes in
environmental conditions (e.g., climate change and rising CO2) in
the age-biomass relationship [21,22].

It is widely acknowledged that environmental factors that
increase forest growth, such as climate change and increasing
atmospheric CO2 concentration are primarily responsible for forest
biomass C accumulation [28,29]. Climate change has been shown
to significantly affect forest biomass C density [30,31], but its
impact may differ among regions [32–36] and among forest types
[25,37]. The effect of increasing CO2 concentration on productivity
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has been widely documented in free-air CO2 enrichment (FACE)
experiments conducted in temperate forests (e.g., [38,39]), but
these site-level results cannot simply be extrapolated to large areas
because of the nonlinear physiological response to increasing CO2

[38]. Additionally, real forest ecosystems experience a gradual
increase in CO2, rather than the sharp increase in CO2 that is uti-
lized in FACE experiments. Fortunately, the spatial and temporal
effects of CO2 fertilization on forest biomass can be determined
from the analysis of earth system model (ESM) simulations, in
which the CO2 concentration is gradually increased at a prescribed
rate. To simulate future forest biomass C sequestration realistically,
it is essential to incorporate the effects of both climate change and
steadily increasing CO2 into the models.

Here, our main objective is to estimate both the separate and
integrated effects of age-related forest regrowth, climate change
and the rising CO2 concentration on future forest biomass C accu-
mulation in China by synthesizing in situ measurements and the
results of model experiments. We use model experiments made
under different socioeconomic scenarios, and also biogeochemical
diagnostic experiments run for the fifth phase of the Coupled
Model Intercomparison Project (CMIP5) [40]. We first established
a statistical model of forest age-biomass C density which includes
the effects of climatic factors. This model was then used to quantify
the proportion of the forest biomass C sequestration capacity from
the 2000s to the 2040s which can be attributed to forest age and
climate change. The effect of rising CO2 concentration on forest
biomass C sequestration capacity was determined through analysis
of the 1% a�1 CO2 diagnostic experiments run in CMIP5.

2. Materials and methods

2.1. Field measurement data

Luo et al. [41] reviewed almost all forest biomass publications
from 1978 to 2008, and collated forest biomass and associated site
information. The resulting dataset included location, forest type,
stand age, stand density, stand volume, mean tree height and
diameter at breast height (DBH), as well as site-level aboveground
and belowground forest biomass. Three filtering criteria were
applied to ensure the representativeness, quality, authenticity
and comparability of the data: (1) the collected data are confined
to stably growing forest stands; (2) only biomass measurement
data (oven-dried weight) based on a normative biomass survey
can satisfy the data collection requirement; and (3) abnormal bio-
mass data should pass professional judgment. There are 1011
records that include forest type, age, biomass, mean annual tem-
perature (MAT) and mean annual precipitation (MAP) and satisfy
the filtering criteria. The geographical distribution of these 1011
plots is shown in Fig. S1 (online). The full dataset was grouped into
14 forest types. The details of each forest type are listed in Table S1
(online). Biomass was converted into C content using a conversion
factor of 0.5 [42].

2.2. Maps of forest distribution and forest age

According to the 1:1,000,000 Vegetation Map of China [43], the
forest distribution data covers 161 plant biomes, which are further
grouped into 14 categories based on the criterion adopted for field
measurements described above. The 14 forest types are Picea -
Abies, Larix spp., Pinus tabuliformis, other temperate Pinaceae spp.,
Cunninghamia lanceolata, Pinus massoniana, other warm Pinaceae
spp., typical deciduous broadleaf forest (typical DBF), Betula - Pop-
ulus, subtropical deciduous broadleaf forest (subtropical DBF), typ-
ical evergreen broadleaf forest (typical EBF), other subtropical
evergreen broadleaf forest (other subtropical EBF), temperate

mixed forest (temperate MF) and subtropical mixed forest (sub-
tropical MF). The specific distribution areas and mean climatic con-
ditions of these 14 forest categories are listed in Table S1 (online).
The map of forest distribution was resampled to 1 km � 1 km
resolution using the nearest neighbor approach.

A forest age map at a spatial resolution of 1 km � 1 kmwas gen-
erated by downscaling the provincial-level national forest inven-
tory data using climate data and tree height data derived from
light detection and ranging (LiDAR) data [16]. This dataset has been
validated against the 8th forest inventory statistics (2009–2013)
[16]. For example, in terms of area of each forest age class, the dif-
ference between downscaled stand age based on age-height rela-
tionships and stand age from forest inventory data is no more
than 3% [16]. Moreover, there is a high coherence between down-
scaled stand age and forest inventory in most of forest types. Zhang
et al. [44] (from Nanjing University) also released a Chinese
national forest age map using the LiDAR-based forest height
through establishing the relationship between forest age and tree
height derived from field measurements. The mean forest age
across China used in this study (� 42.6 years) is comparable to that
from Zhang et al. [44] (43 years in 2005). In addition, the five forest
age classes have the similar fraction between the two national age
datasets (young: 31.1% vs 38.2%, middle-aged: 34.8% vs 31.2%,
premature: 16.3% vs 13.1%, mature: 10.7% vs 11.3%, overmature:
6.6% vs 6.2%) [16,44].

2.3. Historical climate data

We calculated MAT and MAP for the period 2001–2010 from
the China Surface Meteorological Forcing Dataset. This dataset,
which has a spatial resolution of 0.1� � 0.1� and a 3-hour tempo-
ral resolution, was generated by the hydro-meteorological
research group at the Institute of Tibetan Plateau Research, Chi-
nese Academy of Sciences, by merging observations from meteo-
rological stations with model reanalysis [45,46]. Temperature
data are obtained by merging China Meteorological Administra-
tion (CMA) observations with the Princeton meteorological forc-
ing dataset [47]. Precipitation data are derived from the
integration of Tropical Rainfall Measuring Mission data products
[48], CMA operational observation stations, and Asian Precipita-
tion–High Resolution Observational Data Integration Toward
Evaluation of Water Resources data [49]. The 3-hourly climate
datasets are aggregated into annual values, and then resampled
to a 1 km � 1 km spatial resolution to match the maps of forest
age and forest distribution.

2.4. Earth system model (ESM) simulations

Outputs from six ESMs participating in the fifth phase of the
CMIP5 were analyzed (Table S2 online). The six EMSs used in this
study are CanESM2, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR,
MPI-ESM-LR and NorESM1-ME. We used CO2 concentration-
forced historical simulations and future projections under three
different Representative Concentration Pathways (RCP2.6, RCP4.5
and RCP8.5). The monthly temperature and precipitation were
selected from the ESMs outputs. We also extracted monthly C
mass in land vegetation (cVeg) from the 1% a�1 CO2 experiments.
The monthly values of temperature and cVeg for each year were
averaged to give annual values and the precipitation values
summed to give annual totals. All the ESM outputs were resam-
pled to a 0.5� � 0.5� spatial resolution by using Climate Data
Operators.

Since climate simulations from CMIP5 models are generally
biased compared to observations, we applied corrections to the cli-
mate model temperature and precipitation simulation data based
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on the MAT and MAP ‘‘observations” from the China Meteorologi-
cal Forcing Dataset [45,46] for the period 2001–2010.

ftas
sim
t ¼ tasobst0

þ ðtassimt � tassimt0 Þ; ð1Þ

fpr
sim
t ¼ probst0

þ ðprsimt � prsimt0 Þ; ð2Þ

where tasobst0
and probst0

are the MAT and MAP during 2001–2010

based on the China Meteorological Forcing Dataset [45,46]. tassimt
and prsimt are the MAT and MAP during period t from the ESM out-

puts. ftas
sim
t and fpr

sim
t are the corrected values of MAT and MAP dur-

ing period t. These bias-corrected climate data were used to
estimate forest biomass in the near future. The corrected climate
data shows that, within the domain of our study, the annual tem-
perature is predicted to increase by 1.1 �C (RCP2.6), 1.3 �C (RCP4.5)
and 1.8 �C (RCP8.5) by the 2040s compared with the reference per-
iod of the 2000s (Fig. S2a online). Annual precipitation is predicted
to increase slightly over the same period, albeit with large fluctua-
tions (Fig. S2b online).

2.5. Analysis

Initially, we compiled a list of functions that have previously
been applied in the modeling of forest growth (e.g. theoretical
growth equations). These functions are listed in Table S3 (online).
We then adapted these different model formulations of the rela-
tionship between forest age and biomass C density to include cli-
mate factors (MAT and MAP) as additional drivers of forest
biomass C density. The adaptation consisted of adding a linear
combination of MAT and MAP (i.e., a�MAT+b�MAP+c) into the
model formulation as coefficient terms (Table S3 online). We then
used the non-linear least square regression to find the optimized
parameters for each function. R2 and root mean square error
(RMSE) were used as statistical criteria to determine which func-
tion form is most suitable for estimating the forest biomass density
at the plot level. For each forest type, the function with the highest
R2 and the lowest RMSE is denoted in Table S1 (online) as ‘‘Fitted
function”.

We used forest biomass C storage and forest age data during the
2000s as references values. To quantify the effect of changing forest
age on forest biomass C storage from the 2010s to 2040s, forest age
varied inter-annually, whereas climate conditions are held con-
stant at the average level of the 2000s. We defined this simulation
scenario as CLIM-AGE.

Bt
2000s ¼ f ðaget;MAT2000s;MAP2000sÞ t

¼ 2000s;2010s; :::2040s; ð3Þ

4Bage
t ¼ Bt

2000s � B2000s
2000s; ð4Þ

where B denotes forest biomass C storage, and the superscript
and subscript text in B denote the time periods corresponding to
forest age and climate conditions, respectively. For instance, Bt

2000s

represents forest biomass C storage calculated based on the forest
age structure during time period t and the average climate condi-
tions of the 2000s. f is a factor corresponding to one of the model
formulations listed in Table S1 (online). aget represents the forest
age during time period t (t = 2000s, 2010s, . . . 2040s). MAT2000s
and MAP2000s are the MAT and MAP during the 2000s, respectively.
4Bage

t thus reflects the age-related biomass C increment during the
specific time period t relative to the reference period of the 2000s.

We also calculate the uncertainty of forest biomass density
based on the uncertainty in the forest age estimates. Uncertainties
of forest age product are derived from the error map of the
remotely-sensed forest height [16]. For each pixel, we consider

100 samples of normally distributed random forest age along with
its mean value and variance (age uncertainty estimate). Corre-
spondingly, we obtain 100 estimates of forest biomass density
based on these randomly generated forest ages. The standard devi-
ation of these 100 estimates is thus regarded as the uncertainty (or
the error range) of forest biomass density.

To estimate climate change-induced changes in total forest bio-
mass C storage, we allow both forest age and climate conditions to
vary. This mode is denoted VARY-AGE.

Bt
t ¼ f ðaget ;MATt ;MAPtÞ; ð5Þ

4Bclim
t ¼ Bt

t � Bt
2000s; ð6Þ

where Bt
t represents the biomass calculated based on the forest age

structure during time period t and climate conditions in the same
period. MATt and MAPt are the MAT and MAP during period t,
respectively. The effect of climate change on forest biomass C stor-

age in time period t (4Bclim
t ) is obtained by subtracting the age-

related biomass C increment (Bt
2000s, CLIM-AGE) from Bt

t (VARY-
AGE).

To estimate the effect of increasing CO2 concentration on forest
biomass C storage, we used a CO2 experiment (1% CO2) in which a
simulation of 140 years is performed using a 1% per year increase
in CO2 concentration. In this experiment, it is only the CO2 concen-
tration which changes with time. The other forcing parameters
(like climate data inputs) are maintained at their pre-industrial
values. For each pixel, we first determined the evolution of the
CO2 concentration and its corresponding vegetation C density from
the 1% CO2 experiment results. Linear interpolation was then
applied to estimate the forest biomass C densities corresponding
to the mean CO2 concentration in 1978–2008, and in the 2010s–
2040s, for each of the RCP scenarios. The effect of increasing CO2

concentration on the forest biomass C density (F) was then
expressed as the ratio of forest biomass C density at the mean
CO2 concentration during a specific period (e.g., the 2010s) under
a certain RCP (e.g., RCP2.6) to that at the mean CO2 concentration
of 1978–2008.

F ¼ CCO2
t

CCO2
t0

; ð7Þ

4BCO2
t ¼ F � 1ð Þ � Bt

2000s; ð8Þ

where CCO2
t denotes the biomass C density corresponding to the

mean CO2 concentration during period t from the 1% CO2 experi-
ment. t0 denotes the period 1978–2008 (when field data were
collected).

Bfull
t ¼ B2000s

2000s þ4Bage
t þ4Bclim

t þ4BCO2
t : ð9Þ

Therefore, Bfull
t represents the biomass C density in the time per-

iod twhen age-related, climate change and CO2 fertilization effects
are all included.

3. Results

3.1. Evaluation of age-related statistical models for estimation of forest
biomass C storage

Fig. 1 shows the values calculated by the optimal model formu-
lation for each forest type. In general, these models could predict
the forest biomass C density at the site level with acceptable values
of R2 and RMSE (Fig. 1). The best model performance was achieved
in estimating the biomass C density of Picea – Abies, and second
best for subtropical DBF. The explanatory power (in terms of R2)
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of the selected models exceeded 0.50 for nine forest types, and was
greater than 0.70 for six forest types. The RMSE values of the
selected models, across all 14 forest types ranged between 14.71
and 46.47 Mg C ha�1. We also re-fit the biomass prediction model
without the seemingly anomalous biomass observation data. For
each forest type, we used three standard deviation above the mean
as a threshold to filter out these seemingly anomalous biomass
data. Among 14 forest types in our study, the filtered data are
detected in 7 forest types As shown in Fig. S3 (online), the function
fitting without these seemingly anomalous data would not signif-
icantly affect the plot-level biomass prediction except Picea – Abies
(Fig. S3 online).

3.2. Age-related forest biomass C sequestration

Using the optimal model for each forest type, we mapped the
spatial distribution of forest biomass C density during the 2000s.
The total Chinese forest biomass C storage during the 2000s is esti-
mated to be (10.75 ± 0.005) Pg C, with a mean forest biomass C
density of 71.9 Mg C ha�1. Typical DBF is the forest type which
accounts for the largest fraction (27.5%) of total forest biomass C
storage. The second largest fraction (18.5%) is due to P. massoniana
(Fig. S4a online). Forest types with contributions larger than 10% of

the total forest biomass C storage include typical EBF and Picea –
Abies. In contrast, P. tabuliformis, temperate MF and subtropical
MF all contribute very small amounts to the total forest biomass
C storage, mainly due to their relatively small forest coverage
areas. In terms of forest biomass C density, other subtropical EBF
has the highest value (162.8 Mg C ha�1), and typical DBF is second
(94.5 Mg C ha�1). There is high spatial heterogeneity in forest bio-
mass C density. For instance, forest biomass C density is relatively
low in northern China, central China and the southwestern area,
with values generally below 40 Mg C ha�1 (Fig. S4b online). Forest
biomass C density in Daxing’anling and parts of the southeastern
area ranges from 60 to 80 Mg C ha�1 (Fig. S4b online). The Chang-
bai Mountains and the southeastern Tibetan Plateau exhibit
relatively high densities, which can exceed 100 Mg C ha�1

(Fig. S4b online).
When climate conditions are kept constant at the average level

of the 2000s, and only the increase in forest age is considered
(CLIM-AGE), the total forest biomass C storage increased from
(10.75 ± 0.005) Pg C during the 2000s to (17.44 ± 0.005) Pg C in
the 2040s. Interestingly, the decadal increase rate of forest biomass
C storage decreased from 2.52 Pg C decade�1 in the 2010s to 1.09
Pg C decade�1 in the 2040s. In terms of the effect of forest age
increment on forest biomass C storage in different forest types,

Fig. 1. Comparison between predicted forest biomass carbon density and measured values. The red dashed line in each subplot represents the 1:1 line. Performance of the
nonlinear fitting function was gauged using the R2 and root mean square error (RMSE) of each subplot for each forest type.
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P. massoniana and typical DBF contribute more than 50% of the
age-related increase in total forest biomass C storage. The annual
rate of forest biomass C density increase due to forest age incre-
ment in C. lanceolata (3.49 Mg C ha�1 a�1) and typical EBF
(1.61 Mg C ha�1 a�1) are the highest of all the forest types. In
contrast, the lowest rate is found in Larix spp. forest (0.06 Mg C
ha�1 a�1). Further analysis of the spatial distribution indicates that
the most obvious age-related forest biomass C accumulation
appears in the southern Changbai Mountains, southeastern China
and the southeastern Tibetan Plateau, with magnitudes exceeding
50 Mg C ha�1 during the period from the 2000s to the 2040s
(Fig. S4b–f online). By the 2040s, the largest forest biomass C
density is found in the southeastern Tibetan Plateau and
southern Changbai Mountains, with regional values exceeding
140 Mg C ha�1. Values in the southeastern area exceed 120 Mg C
ha�1 (Fig. S4f online). By contrast, the increase in biomass C density
is <40 Mg C ha�1 in northern China, central China and the
southwestern area. There was no significant age-related forest C
accumulation in the northern region of Daxing’anling during the
2000s to 2040s.

3.3. Effect of climate change on forest biomass C sequestration

Here, we forced the optimal model for each forest type with
reconstructed climate data from the 2010s to the 2040s while
varying forest age (hereafter referred to as VARY-AGE). Comparison
of the CLIM-AGE results with those from VARY-AGE enables us to
estimate the effect of climate change on changes in forest biomass
C storage. We used climate simulations from six CMIP5 models to
characterize the uncertainty of future climate change under each
RCP scenario. During the 2010s, climate change induces an
increase in forest biomass C storage of between (0.04 ± 0.17) and
(0.11 ± 0.16) Pg C depending on the particular RCP scenario
(Fig. 2). By the 2040s, the increase ranges from (0.52 ± 0.29) to
(0.60 ± 0.20) Pg C. Although the mean response of forest biomass
to climate change is positive under each RCP scenario, there is
great uncertainty in the change of total forest biomass C storage
(in terms of magnitude and even direction) estimated using differ-
ent climate projections (Fig. S5 online). When comparing different
time periods, the positive impact of climate change on forest bio-
mass C storage is consistently observed among all three climate
projections during the 2040s (Fig. S5 online). The effect of climate
change differs among forest types (Fig. 3). For example, climate

change is favorable in all scenarios for biomass C accumulation
in Picea - Abies, P. tabuliformis, typical EBF, temperate MF and sub-
tropical MF forests (Fig. 3). In contrast, a negative effect is observed
in other temperate Pinaceae spp. and other subtropical EBF (Fig. 3).
For C. lanceolata, the climate change impact is nearly neutral
(Fig. 3).

To quantify the contribution of only temperature (or only pre-
cipitation) change to changes in forest biomass C storage during
the different time periods (2010s, 2020s, 2030s and 2040s), we
forced the optimal model for each forest type by varying forest
age, holding precipitation (or temperature) constant, and varying
temperature (or precipitation). Our results show that the effect of
precipitation change alone on biomass C storage is positive during
the 2040s in each of the three scenarios, albeit with large uncer-
tainties (Fig. S6 online). Precipitation changes contribute to an
additional �0.60 Pg C of forest biomass C accumulation by the
2040s (0.59 ± 0.30) Pg C under RCP2.6, (0.65 ± 0.22) Pg C under
RCP4.5, (0.61 ± 0.31) Pg C under RCP8.5. The temperature effect is
much smaller than the precipitation effect, and the overall warm-
ing impact on forest biomass C accumulation is negative during all
periods studied in all three scenarios (Fig. S6 online). Although the
effect of climate change on the change in total forest biomass C
storage is driven mainly by changes in precipitation, the relative
roles of temperature and precipitation changes in determining for-
est biomass C accumulation vary among forest types (Fig. S7
online). For example, warming is conducive to biomass C accumu-
lation in Picea – Abies, Betula – Populus, typical EBF, and subtropical
MF, but such warming is unfavorable for biomass C accumulation
in other temperate Pinaceae spp., typical DBF, subtropical DBF,
and other subtropical EBF (Figs. S7 and S8 online). Increased pre-
cipitation strongly stimulates biomass C accumulation in typical
DBF and temperate MF during the 2030s and 2040s under all the
three scenarios (Figs. S7 and S9 online).

3.4. Effect of increasing CO2 concentration on forest biomass C
sequestration

In the output of the 1% CO2 experiments, vegetation C storage is
found to increases monotonously with atmospheric CO2 concentra-
tion. This fertilization effect of rising CO2 concentration on forest
biomass C storage can be represented as a ratio (see Methods).
Increasing CO2 concentration could increase forest biomass C
sequestration by 1.68–3.12 Pg C across the three RCP scenarios
by the 2040s compared to the scenario that only consider the for-
est age effect (Fig. 2). There is still great uncertainty in the CO2 fer-
tilization effect, however, as illustrated by the error bars in Fig. 2.
For example, by the 2040s, the mean uncertainty of the CO2

fertilization effect on forest biomass C sequestration may reach
0.76 Pg C (based on an average of the values of 0.59, 0.71 and
0.97 Pg C obtained for scenarios RCP2.6, RCP4.5 and RCP8.5, respec-
tively), which is greater than the magnitudes of the climate change
effect on the biomass increase. The fertilization effect may also
vary with forest type. Fig. 3 shows that particularly large CO2 fer-
tilization effects were found in C. lanceolata (20.3 Mg C ha�1 under
RCP2.6; 28.9 Mg C ha�1 under RCP4.5; 37.5 Mg C ha�1 under
RCP8.5) and other subtropical EBF (14.2 Mg C ha�1 under RCP2.6;
20.5 Mg C ha�1 under RCP4.5; 29.2 Mg C ha�1 under RCP8.5) by
the 2040s compared to the projections which only include the
effects of forest age (Fig. 3).

3.5. Chinese forests biomass C sequestration potential in the future

Biomass C storage in Chinese forests could reach (19.64 ± 0.58)
Pg C (RCP2.6), (20.38 ± 0.78) Pg C (RCP4.5), and (21.12 ± 1.06) Pg C
(RCP8.5) by the 2040s if the effects of forest age, climate change
and rising CO2 levels are integrated (Fig. 2). Under each scenario,

Fig. 2. Total forest biomass carbon storage during the 2010s to 2040s which is
attributable to forest age, climate change and rising CO2 under each Representative
Concentration Pathway (RCP) scenario (RCP2.6, RCP4.5, and RCP8.5).
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the increase in forest biomass C sequestration due to forest age
outweighs that due to the CO2 fertilization effect. The climate
change effect, while positive, is much smaller than either the effect
of forest age increment or rising CO2 concentration. For example,
under RCP8.5, the CO2 fertilization effect on forest biomass C
sequestration is only half that of the stimulating effect of forest
age increase, and climate change-induced increase in C sequestra-
tion is only one-tenth of that due to forest age increase. It is nota-
ble that the total forest biomass C sequestration rate from the
2000s to 2040s is estimated to be �0.26 Pg C a�1 under RCP8.5, a
rate which could offset �10% of contemporary greenhouse gas
CO2 emissions (�2.70 Pg C during the 2010s).

4. Discussion and conclusion

To map forest biomass C storage, we developed an optimal
semi-empirical model using forest biomass C density, forest age
and climatic factors for each forest type, based on the plot data
for each forest type. In contrast to previous studies, we used cli-
matic variables (MAT and MAP) to establish forest age-biomass
relationships. These semi-empirical models can predict biomass
C density at the plot level with acceptable skill, suggesting that
our choice of candidate models is reasonable. Using the highest
R2 and the lowest RMSE as statistical criteria to select the optimal
model for each forest type ensures the best possible fit to the field
observations is achieved. Based on the optimal model established
for each forest type, total forest biomass C storage in China was

estimated to be (10.75 ± 0.005) Pg C during the 2000s. Most previ-
ous attempts to determine total forest biomass C storage in China
have used national forest inventory data [14,50–53], and have pro-
duced values lower than our estimate. For example, Zhang et al.
[14] used repeated national forest inventories that provided infor-
mation on the stock volume and area of the dominant tree species
in several age groups over different administrative units to esti-
mate forest biomass C storage. Their approach produced an esti-
mate of �6.24 Pg C. The discrepancies in the estimate obtained
using the different methods vary with forest type. If we consider
the mean biomass C densities derived for different forest types
and compare them with values obtained from the 7th inventory
[54], we find the values for Picea – Abies (77 Mg C ha�1 vs
81 Mg C ha�1), P. tabuliformis (33 Mg C ha�1 vs 29 Mg C ha�1),
and Betula – Populus (33 Mg C ha�1 vs 39 Mg C ha�1) are in
relatively good agreement. In contrast, our estimates are
approximately double the values obtained from inventory data
for Larix spp. (70 Mg C ha�1 vs 33 Mg C ha�1), P. massoniana (62
Mg C ha�1 vs 27 Mg C ha�1), and typical DBF (94 Mg C ha�1 vs
45 Mg C ha�1). Some of the difference between the values obtained
using different methods may be attributable to the fact that field
measurements of forest biomass are generally higher than those
reported at the province level in Chinese forest inventory data
[14,55]. Difference between stand age distribution data obtained
from field measurements and those derived from the LiDAR-
based forest age map could also lead to differences in forest bio-
mass C storage estimates. Fig. S10 (online) shows that there is an
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extremely significant difference (P < 0.01, Kolmogorov-Smirnov
test) between the frequency distribution of stand age obtained
from field measurements and that obtained from the forest age
map. For the field measurements, young forest is dominant, with
middle-age and mature stage forests undersampled in comparison
to the national forest age distribution. Since forests in the early
growth stages have a faster C accumulation rate than those in later
stages, the extrapolation of field observation made in young forest
to middle-aged and mature stage forests could lead to an overesti-
mation of biomass.

Support for our relatively high estimate of total forest biomass C
storage in China comes from a growing number of studies that inte-
grate field measurements with spatial satellite observations (e.g.,
tree height, vegetation indices, land cover) to map forest biomass
C density [51,52,56–59]. For example, using spaceborne LiDAR and
forest inventory data, Su et al. [59] estimated that the mean above-
groundbiomassCdensity is�60 MgCha�1 throughoutChina,which
equates to a total forest biomass C density of�74.4 Mg C ha�1 if the
conversion ratio of total to aboveground biomass C density is
assumed to have a value of 1.24 [60]. Yin et al. [61] integrated
plot-level field measurements with satellite reflectance data and a
vegetation index, to show that the aboveground forest biomass C
density was 56.1 Mg C ha�1 during the 2000s, which equates to a
total forest biomass C density of 69.6 Mg C ha�1 using the same con-
version ratio. These results are similar to our estimate of forest bio-
mass C density of 71.9 Mg C ha�1 during the 2000s.

In agreement with previous studies [50,51], we found that the
southeastern Tibetan Plateau has the greatest biomass C density,
whereas southeast China has a relatively low density. This distri-
bution occurs because the southeastern Tibetan Plateau has favor-
able climatic conditions, a relatively cool temperature and
moderately high precipitation that can support fast forest growth
and slow decomposition [62], while the forests in southeast China
are generally characterized by a young age structure [16]. Our find-
ing that forest biomass C density in both the Changbai Mountains
and Xiaoxing’anling in the northeastern region is greater than the
value in Daxing’anling is also consistent with previous studies (e.g.,
[57,63]).

Stand age is a strong determinant of forest biomass C sequestra-
tion rates [19,64–68], and thus also forest biomass C storage [14].
Information on the forest’s stage of development should therefore
be included in predictions of the future trajectories of forest bio-
mass C storage. Here, we showed that forest age change alone could
increase biomass C stock by 6.69 Pg C from the 2000s to the 2040s
(�0.17 Pg C a�1). Our estimate is in agreement with the work of Xu
[69], which showed that the forest age-related increase in biomass
C storage from 2010 to 2050 will be �6.5 Pg C (� 0.16 Pg C a�1)
based on the logarithmic relationship between forest age and bio-
mass. However, our result is larger than that of Hu et al. [22],
who constructed an age-based matrix model using continuous for-
est inventory datasets and found that the overall increase in forest
biomass C storage will be�3.55 Pg C from 2005 to 2050 (� 0.079 Pg
C a�1). We also found that the amount of decadal forest biomass C
sequestration capacity during the 2010s (2.52 Pg C)will decrease by
more than 50% during the 2040s (1.09 Pg C). This decline in forest
biomass C sequestration with increasing stand age can be partially
attributed to declining net primary productivity (NPP) [70–73],
although forest C sequestration generally increases with tree age
and size at the stand level [20]. Prior studies conducted at the regio-
nal scale also reported age-related increases in forest biomass C
density, albeit of different magnitudes. For example, Sun et al.
[74] found that forest biomass C density on the southeastern Tibe-
tan Plateau increased by�16 Mg C ha�1 from 2001 to 2050 (>50 Mg
C ha�1 in our study), based on the forest age-biomass C density rela-
tionship found in 413 fieldmeasurements. Since Sun et al. [74] used
a similar forest stand age map to that used in this study, the differ-

ence between our study and Sun et al. [74] is attributed to the num-
ber of samples (413 versus 1011 samples in our study) and the use
of fitting functions to construct the forest age-biomass C density
relationship (logistic curve versus the species-specific fitting equa-
tions applied in our study). In addition, stand age-driven changes in
forest biomass C storage also differ among forest types because of
their species-specific physiological growth traits. Fast-growing
needle-leaf forests, such as C. lanceolata and P. massoniana, display
relatively large forest biomass C sequestration rates. Zhao et al. [75]
found that C. lanceolata has larger NPP than other Chinese forests
using the 3-PG (Physiological Principles in Predicting Growth)
model. In contrast, a relatively low growth rate was found in Picea
- Abies forests (e.g., [76]). Our results highlight the fact that demo-
graphic factors play an important role in long-term forest biomass C
sequestration capacity. The stand age effect should be considered in
any process-based model of forest ecosystem C stocks and fluxes.
For example, models could include the NPP-age relationship when
simulating forest C stock during stand development (e.g., [77–79]).

In this study, we showed that ongoing climate change could
exert positive impacts on forest biomass C sequestration capacity,
but this effect is much smaller than the effect of increasing stand
age. Furthermore, the positive effect of climate change is caused
mainly by precipitation changes rather than by warming. Biomass
C density in temperate forests is determined primarily by water
availability [37], and we observed that it is significantly enhanced
by increased precipitation. The sign of the warming effect on forest
biomass C density depends on the background climate, and a posi-
tive effect can shift to a negative one if the background temperature
exceeds a certain threshold value [30]. This finding tentatively sug-
gests that the non-significant warming effect observed in this study
could be due to regional compensation between contrasting tem-
perature effects. However, a consensus on the effect of climate
change on forest biomass C accumulation has still not been attained
[80–83]. For example, Ju et al. [81] found that increasing tempera-
ture and precipitation may have a negative impact on forest pro-
ductivity in most regions, except the western parts of southwest
China and the northern part of southeast China. By contrast, Ni
[82] noted that climate change alone would produce an increase
in vegetation C storage, especially inmixed and evergreen broadleaf
forests. We also showed that the effect of climate change differs
among forest types [25], stand ages [33] and regions [36]. For exam-
ple, ecosystems in the northern and western parts of China are
more sensitive to climate change than those in the eastern region
[84]. Climate change has been shown to increase forest stand mor-
tality in some regions, undermining the vegetation growth effect
[85]. Our results further highlight the fact that the observed non-
uniform effects of climate change should not be overlooked when
simulating the future trajectories of forest biomass C stock.

The future forest biomass C storage calculations presented here
were based on uncorrected ESM climate data (Fig. S11 online). The
MAP derived from uncorrected ESM data is 200 mm greater than
the values derived from the corrected data. In contrast, the value
of MAT obtained from the uncorrected ESM data is �0.2 �C lower
than the value obtained from the corrected data. Fig. S11 (online)
shows that estimates of forest biomass C storage made using
uncorrected ESM climate data are much higher than those based
on the corrected climate data. The difference can be larger than 2
Pg C for all time periods under each scenario. Moreover, the uncer-
tainty in the forest biomass prediction is also larger when the
uncorrected data are used. Our analysis suggests that the forest C
sequestration capacity based on uncorrected ESMs climate data
would be an overestimate, and highlights the fact that ESM outputs
need to be calibrated against observations to ensure that the most
realistic projections of forest biomass C sequestration are obtained.

As is common practice, we use the ‘‘space-for-time substitu-
tion” framework to establish the relationship between forest bio-
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mass density, age and climatic factors within each forest type. This
technique is widely used in the projection of ecosystem responses
to future climate change because of insufficient temporal data [86–
88]. However, this approach could lead to bias in the results, since
it assumes that the spatial and temporal variability in forest bio-
mass density in response to climate change are equivalent
[89,90]. Long-term field measurements are required if this poten-
tial issue for the accurate forecasting of future trajectories of forest
biomass under changing climate regimes is to be overcomed.

The uneven distribution of sampling sites is another potential
source of errors. In northwest China and Xinjiang, there are a rather
limited number of samples for the dominant forest types, Larix spp.
(2), Betula-Populus (5) and typical DBF (7). This lack of samples is
partly due to the fact that the forest coverage in these regions is
also scant. To avoid this limitation, we established the relationship
between forest biomass density, age and climatic factors based on
forest type rather than region. For all forest types, the number of
sample sites is in the range 25 to 268. For the three dominant tree
species in these regions, the R2 of the constructed statistical model
could reach 0.41 (P < 0.01), 0.35 (P < 0.01), 0.52 (P < 0.01), respec-
tively, suggesting that these models have some statistical power
in modeling forest biomass distribution. Even though the forest
coverage is limited, and forest structures are relatively simple in
northwestern China and Xinjiang, there may still be considerable
spatial variability in forest biomass distribution. Ideally, more field
samples are needed to further reduce the uncertainty.

In a significant advance over prior studies, we estimated the
effect of rising CO2 concentration on forest biomass in terms of
the forest age-climate-biomass relationship. The responses of dif-
ferent forest types to climate change differed across our study area,
whereas the effects of rising CO2 concentration were much more
consistent across forest biomes. Process-based model simulations
show that China’s role as a C sink over the past two decades was
mainly due to the CO2 fertilization effect, and that climate change
alone would cause this area to become a C source [35]. We show
that the magnitude of the CO2 fertilization effect is comparable to
the beneficial effect of increased stand age in some forest types,
such as Picea - Abies. In addition, the CO2 fertilization effect is larger
than the negative warming impact on forest biomass C sequestra-
tion. However, we note that current ESMs do not include the effect
of nutrient availability on vegetation growth, and thus the CO2 fer-
tilization effect might be overestimated [91]; this issue highlights
the need for future assessments of forest biomass C sequestration
capacity to consider the limitations imposed by soil fertility.

In this study, we quantified Chinese forest biomass C sequestra-
tion capacity in the near future, integrating the effects of stand
development, climate change and increasing CO2 concentration.
While the link between forest biomass C density and forest age
appears to be clear, few model formulations consider the interact-
ing effects of climate change and forest age on forest biomass C
sequestration capacity. We compared the performance of different
empirical statistical functions in estimating plot-level biomass C
density, and selected the optimal function form and/or parameters
to predict the forest biomass C storage change in the future. In con-
trast, previous studies such as Xu et al. [24], He et al. [21] and Chen
et al. [92] used only a logistics function to estimate biomass for dif-
ferent forest types. Moreover, we estimate the individual contribu-
tion of forest aging and climate change to the overall increase in
forest biomass C storage. The individual effect of temperature
and precipitation changes on forest biomass C storage are also sep-
arated out, by the method of keeping one climatic factor constant
and allowing the other to vary. Our study therefore provide an
analysis of climate change impacts on changes in forest biomass
C storage, which has not been included in previous studies e.g.
Xu et al. [24], He et al. [21] and Hu et al. [22]. Our results suggest
that the forest age-induced increase in total forest biomass C

sequestration has the greatest effect, highlighting the importance
of previous afforestation programs in enhancing future forest C
uptake [93]. The overall positive effect of climate change on forest
biomass C sequestration is relatively small. Furthermore, increas-
ing CO2 concentration, which has always been omitted from prior
studies, will also significantly contribute to future C sequestration.
The response of different forest types to climate change and CO2

fertilization and their growth characteristics should be taken into
account when choosing species for future forest plantation.

Several caveats remain that should be examined in future stud-
ies. First, we used a fixed forest distribution map and did not con-
sider changes in forest area. The Chinese government will likely
continue to launch tree planting projects that further increase for-
est biomass C sequestration capacity [94], although such increase
could be partially offset by the C loss due to potential wood har-
vesting and natural disturbances. Natural disturbances regimes
like forest fires, insect outbreaks, and extreme weather events
could cause tree mortality, defoliation and other growth inhibi-
tions, which could further undermine the desired effects from for-
est regrowth and environmental change [95]. For example, Lü et al.
[96] found that mean annual C emission due to forest fires in China
is about 11.31 Tg C a�1. The 1987 conflagration in northeastern
China emitted 25–49 Tg C to the atmosphere [97]. Hence, our pre-
diction of forest biomass C sequestration capacity might be an
underestimate, if the aging effects from larger forest area out-
weighs the effect of disturbances. Second, the effect of nitrogen
deposition on forest biomass C sequestration is ignored in this
study. The trajectories of future biomass C sequestration would
be more realistic if the effect of nitrogen deposition on forest bio-
mass C sequestration could be incorporated into forest biomass
predictive models. But the magnitude and direction of the contri-
bution of nitrogen deposition to forest biomass C accumulation
remain elusive [98–102]. A synthesis of experimental studies is
required to elucidate the effect of nitrogen addition on forest bio-
mass C sequestration capacity. Third, in accordance with prior
studies (e.g., [19,103]), our results indicated that forest biomass C
sequestration capacity over a decadal time scale has a much
greater reliance on the disturbance regime than on climate change
or increasing CO2 concentration. This result suggests that current
process-based models of forest growth and C dynamics, which
assume that ecosystem dynamics are under equilibrium condi-
tions, would not properly simulate forest regrowth processes
[18] and could therefore underestimate biomass C accumulation
in certain forest types [62]. This finding further highlights the
importance of explicit representation of forest age dynamics fol-
lowing disturbance, which should be embedded within the current
framework of process-based C cycle models (e.g., [104]).
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