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The vast majority of species that have ever lived went extinct sometime other than during one of the great
mass extinction events. In spite of this, mass extinctions are thought to have outsized effects on the evolu-
tionary history of life. While part of this effect is certainly due to the extinction itself, I here consider how the
aftermaths of mass extinctionsmight contribute to the evolutionary importance of such events. Following the
mass loss of taxa from the fossil record are prolonged intervals of ecological upheaval that create a selective
regime unique to those times. The pacing and duration of ecosystem change during extinction aftermaths
suggests strong ties between the biosphere and geosphere, and a previously undescribed macroevolu-
tionary driver — earth system succession. Earth system succession occurs when global environmental or bi-
otic change, as occurs across extinction boundaries, pushes the biosphere and geosphere out of equilibrium.
As species and ecosystems re-evolve in the aftermath, they change global biogeochemical cycles — and in
turn, species and ecosystems— over timescales typical of the geosphere, often many thousands to millions
of years. Earth system succession provides a general explanation for the pattern and timing of ecological and
evolutionary change in the fossil record. Importantly, it also suggests that a speed limit might exist for the
pace of global biotic change after massive disturbance — a limit set by geosphere–biosphere interactions.
For mass extinctions, earth system succession may drive the ever-changing ecological stage on which spe-
cies evolve, restructuring ecosystems and setting long-term evolutionary trajectories as they do.
Introduction
Extinction rates are not constant over the long history of life.

Instead, bursts of extinction and subsequent speciation punc-

tuate long intervals of relatively moderate taxonomic turnover

[1,2]. Rather than a plodding tortoise, extinction is a hare — rac-

ing in fits and starts above some background level of attrition [1].

The largest of these events are known as mass extinctions.

Mass extinctions are topics of intense interest because of their

ecological and evolutionary effects [3–5]. From a macroevolu-

tionary perspective, they have a twofold importance [5] (Figure 1).

First, mass extinctions have profoundly influenced the history of

life through death [3]. The largest mass extinctions, referred to as

the ‘Big Five’ (Box 1), are thought to have killedmore than 75%of

species alive at the time [6]. Because extinctions are typically se-

lective, the mass death of species results in entire branches be-

ing trimmed from the tree of life [7]. In addition, selectivity during

mass extinctions often differs from that in surrounding time pe-

riods (Box 2) [5,8]. Changed selectivity means that once diverse

clades, such as the non-avian dinosaurs of the late Cretaceous,

can be lost in a sudden swoop across extinction boundaries

[9,10]. Second, mass extinctions have influenced the history of

life through their long-reaching effects on the life that survives

[11–13] (Figure 2).

Although extinction intervals are so brief as to appear geolog-

ically instantaneous [14], strange ecosystems dominate for up

to millions of years in their aftermath (Figure 3) [15–17]. Mul-

tiple lines of evidence suggest that post-extinction ecosystems

function differently than those before and long-after the event

[18]. Extinction boundaries typically coincide with excursions

in geochemical markers and with changes in the formation

and composition of the rocks themselves [19–21]. Generally

speaking, these changes in geochemical and geological records
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indicate global scale upheaval in various components of the

earth system, such as the carbon cycle, coincident with the

extinction [22,23]. As such, mass extinctions are not step-events

but rather a step into a prolonged alternative global ecosystem

state [18].

In addition, survivors of extinctions are an unusual lot, exhibit-

ing morphological, physiological and ecological characteristics

biased by the selectivity of the extinction [24–26]. This also has

important implications for ecosystems in the aftermath. For

instance, the loss of large bodied taxa across mass extinction

boundaries is so characteristic that it is known as the ‘Lilliput ef-

fect’ after the diminutive Lilliputians in Swift’s Gulliver’s Travels

[27]. Body size is a key ecological trait, and widespread dwarfing

can change, for instance, the efficiency of energy use within and

among taxa [28]. The preferential loss of certain clades, morphol-

ogies, trophic levels and functional types (including habitat pro-

viding taxa) can also reduce the number of possible life history

strategies in the immediate aftermath of an extinction. Such a

reduction leaves the re-evolution of some ecological strategies

dependent on the evolution of others and can allow entirely new

ecological strategies, and interactions, to evolve [29–31]. Reptiles

in the aftermath of the largest mass extinction of all, the Permian-

Triassic (PT) extinction, provide an example of the latter, as they

evolved from sprawled into upright predators on land [32] and

invaded the sea [33], all in the Early Triassic. These innovations

were not presaged by evolutionary trends in the Permian and

are instead attributed to the effects of the aftermath of the PT

massextinction [33,34]. In short, it is in theunusualworldof extinc-

tion aftermaths that species radiate and, in doing so, rebuild spe-

cies-rich clades and geologically stable ecosystems [13,35].

In this review, I consider the potential of mass extinctions to in-

fluence the history of life through their long-lasting influence on
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Figure 1. The impacts of mass extinctions.
Mass extinctions effect macroevolution through extinction and through the
evolution of life in the aftermath. Mass extinctions coincide with the abrupt
disappearance of taxa from the fossil record (red) and are followed by rapid,
often stepped, rediversification in surviving taxa (blue) during interval char-
acterized by strange ecosystems globally. The time spans are approximate
and based on order of magnitude estimations for the duration of the last three
of the Big Five mass extinctions and their aftermaths.
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life. In particular, I focus on the unusual ecosystems in the after-

math and their role in macroevolution — a period during which

diversity rapidly rebounds to pre-extinction levels [36]. Rapid

evolution in a world emptied of ecological incumbents is ex-

pected if interspecific interactions are assumed to affect speci-

ation rates [4,12,37], but multiple factors might set the pattern

and pace of evolution, including the extent and duration of

ecological collapse [38]. Mass extinctions are often discussed

as if they are instantaneous point-events, characterized by the

abrupt, selective loss of some taxa and the subsequent radiation

of others. But this is far from true: whether and how the pro-

longed aftermath of mass extinctions matters in the history of

life is the primary question that I seek to address.

First, I briefly review key aspects of what is known about life

in the immediate aftermath of mass extinctions. This section

is deliberately selective. I focus primarily on a single extinction

event (the Permian-Triassic: PT) and a single realm (marine) in

order to highlight typical aspects of life in the aftermath of ex-

tinctions, the types of records and data used to make such

inferences and the pertinence of these intervals to (macro-) evo-

lution. Over the last decades, widespread evidence has accrued

for a long-pacing of post-extinction community turnover and

eventual ecosystem stabilization. I then use a second mass ex-

tinction (the Cretaceous-Paleogene; KPg) to consider whether

biosphere–geosphere feedbacks might account for this pattern

and timing of biotic change. Biosphere–geosphere feedbacks

are intriguing, because they provide a means for global ecosys-

tems to drive directional changes in the environment over many

10,000s to 1,000,000s of years. I end by briefly considering the

relative importance of the aftermaths of mass extinction in the

history of life by comparing the evolutionary events of aftermaths

with the times in-between.

Ecological Flux in the Aftermath
The change in ecosystems across extinction boundaries is argu-

ably as dramatic as the loss of taxa (Figure 3) [5]. In the wake of

mass extinctions, complex biotic structures, such as coral reefs,

can be lost for hundreds of thousands to millions of years [18]. At

the same time, the composition and geochemistry of the rocks

being formed often indicate a prolonged interval of earth system

change [16,18]. On the re-establishment of pre-extinction-like
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complexity in ecosystems, the fundamental organization (struc-

ture) and function of ecosystems is often permanently changed

(Figure 2B) [13,39–41]. How do we know that ecosystems

changed, and what does it mean for understanding the evolution

of life in the aftermath?

The PT extinction, the greatest mass extinction of the last half

billion years (Box 1), provides a classic example of the prolonged

existence of strange ecosystems in the aftermath of extinction

[16]. The PT mass extinction was likely triggered by a single

massive pulse of flood basalt volcanism in Siberia �252 million

years ago [42]. Erupting through thick carbon- and sulfur-bearing

sediments [43,44], this pulse of volcanism released enormous

volumes of gases that led to an increased atmospheric CO2 con-

centration, global warming, acid rain and terrestrial erosion, and

ocean acidification [16,19]. At the same time, marine sediments

across the PT mass extinction evidence widespread anoxic, and

sometimes also sulphidic, conditions in the open ocean [16,19],

likely to be due to some combination of increased nutrient input

from land and slower ocean circulation [45]. In the ocean, the

extinction selected against taxa with poorly buffered respiratory

physiologies and calcareous shells [25,46]. This selectivity has

been attributed to factors including oxygen stress (hypoxia),

CO2 poisoning (hypercapnia) and carbonate undersaturation

[25]— all physiological factors tied to various environmental per-

turbations suggested by the rock record and earth system

models. Extinction survivors were also typically small bodied

[47,48]. Estimates for loss of species across the PT boundary

reach as high as more than 90% of well-fossilized marine spe-

cies alive at the time [49,50], although strong selectivity compli-

cates such estimates.

To step back for a moment, just consider how remarkable

this hypothesis is — to argue that we can trace the trigger of

mass extinction a quarter of billion years ago to a single pulse

of volcanism in Siberia and its cascade of environmental effects.

It is astounding and relies on dramatic improvements in our

ability to precisely date the geological time scale, to discern

the relative amount of time captured in very thin layers of rock

and to measure various aspects of the environment with

geochemistry. For instance, in the case of PT mass extinction,

recent dating estimates that it occurred �242 million years

ago over a period of 60,000 years (+/- 48,000) [42]. 60,000 years

is quite short relative to the estimated full eruption duration of

the Siberian Traps of 1–2 million years, the generally recognized

trigger of the extinction [50,51], and suggests that a single,

outsized pulse of volcanism triggered the extinction [42].

Similar improvements in constraining the timing, causality, and

importance of triggers and feedbacks have been made

across many major extinction events and have resulted in

real progress in our understanding of extinctions and their

aftermaths [52].

Various lines of evidence suggest the existence of a long,

multi-million year interval characterized by highly altered ecosys-

tems in the aftermath of the PT mass extinction [16]. Coral and

metazoan reef systems were replaced by microbial carbonate

mounds for up to six million years [16]. Key marine functional

types including macroalgae, metazoan suspension feeders, mo-

bile predators and deposit feeders were lost or rare for at least

the first million years [16]. Complex burrowing of benthic sedi-

ments remained relatively rare for yet another �4 million years
er Ltd All rights reserved



Box 1. What is a mass extinction?

A mass extinction is any interval of time with global extinction rates above background levels for a large portion of clades

(Figure 2A) [2,18,126]. How this definition is applied varies in practice, but is typically determined using the record of abundant

shelly marine metazoans [127]. The largest marine mass extinctions coincide with comparable events in terrestrial fauna but

some terrestrial extinctions do not have marine analogs [128]. One recent authoritative estimate placed the total number of

mass extinction events in the last half billion years at 18 [2], with earlier estimates ranging from nearly thirty to more than sixty

events [126,129]. However, the very largest mass extinction events, which may have killed more than 75% of the species globally

[6], are clear regardless of the approach [1,2]. The first family-level Phanerozoic diversity curve of shelly marinemetazoans brought

immediate attention to five intervals of remarkable low diversity [1,123]. An overview of these five events is provided below along

with the leading hypothesized trigger, the losers (total extinction or heavy losses) and the winners (radiating or increasing in abun-

dance or importance):

Event Trigger Losers Winners

Ordovician-Silurian (OS) Glaciation Strophomenid & rhynchonellid

brachiopods, nautiloids, trilobites, crinoids,

conodonts, graptolites

Siliceous sponges, tabulate corals

Late Devonian (F/F) Glaciation Stromatoporoids, tabulate corals, trilobites,

cricoconarids, eurypterids, brachiopods,

ammonoids, agnathans, placoderms

Chondrichthyans, actinopterygians (ray-

finned fishes)

Permian-Triassic (PT) Volcanism Brachiopods, crinoids, ammonoids

trilobites, tabulate and rugose corals, basal

tetrapods

Bivalves, gastropods, malacostracans,

echinoids, scleractinian corals, archosaurs

Triassic-Jurassic (TJ) Volcanism Calcareous sponges, scleractinian corals,

brachiopods, nautiloids, ammonites

Siliceous sponges, dinosaurs

Cretaceous-Paleogene

KPg)

Impact Non-avian dinosaurs, ammonites,

calcareous plankton, mosasaurs,

pterosaurs, rudist bivalves

Birds, mammals, spiny-rayed fishes

Table based on [2,16,18,120,130–133].

Dubbed the ‘Big Five’, these events are by far the best studied mass extinctions — with most of the attention devoted to the

Permian-Triassic and Cretaceous-Paleogene mass extinctions [18]. Of the Big Five, the Late Devonian is probably not a mass

extinction at all, but rather a mass depletion of biodiversity driven by low speciation rates [134]. In spite of the unceremonious

down-grading of the Late Devonian, the ‘Big Five’ remains in common usage in the scientific community, accounting for the evoc-

ative, albeit speculative, label ‘The Sixth Mass Extinction’ for the current biotic crisis.

The vastmajority of individuals are born and die without leaving a trace [135]. Thus, the window into the history of life provided by

the fossils has a rather particular view. Mass extinctions are, perhaps surprisingly, identified through diversity compilations at

the family or genus level [1,136], with extrapolated species-level losses [49], in order to minimize issues related to taxonomic stan-

dardization and sampling. Geographic [137], physiological [25,46] and ecological selectivity [24] all ensure that global-scale spe-

cies-level extrapolations are best estimates, rather than precisely known quantities. Within-clade studies often reach much finer

temporal resolution (thousands rather than millions of years) and directly assess species level changes [17], but cannot resolve

rates globally or in rarely to never fossilized clades. Even in well-fossilized clades, it can be difficult to assess whether a species

is extinct or just rare, as rare species have a low chance of being discovered as fossils [14]. Consequently, at a global scale all that is

known for certain is that past mass extinctions are events that trim once-dominant branches in the tree of life from view and coin-

cide with widespread evidence for prolonged ecological upheaval.

In any given clade, the most important extinction event may or may not be a global mass extinction. For instance, the Late Qua-

ternary (from 50,000 to �11,000 years ago) saw the global extinction of roughly 90 genera of mammalian megafauna [138,139]. In

North and South America and Australia, more than 70% of all mammalian megafauna genera were lost [139]. Although this was a

mass extinction of mammalian megafauna, it is not considered a ‘mass extinction’ because it primarily affected one clade.
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[16,48], a decrease otherwise not observed outside of extinction

intervals [18,53,54]. In the aftermath of the PT extinction, certain

features were preserved in rocks that had not occurred since

abundant metazoans fully colonized the soft sediments of the

seafloor [55]. These features, and other anachronistic structures

[56], are important because they imply that certain ecological

strategies were so rare (or even absent) that they no longer

had a readily observable effect on ecosystems. Evidence on
Current Biology 25, R941–R
land is relatively limited by comparison due to the availability of

records, but a gap in the formation of coal suggests broad-scale

changes in terrestrial systems as well [16].

The rate at which species re-diversified and complex eco-

systems were re-established from this altered ecosystem state

differed across taxa, environments, habitats and locations. For

instance, the re-evolution of pre-extinction like burrowing in

deep sea sediments (bioturbation) in benthic communities varied
952, October 5, 2015 ª2015 Elsevier Ltd All rights reserved R943



Box 2. Distinct patterns of extinction selectivity influence macroevolution

There is now widespread support for the importance of selectivity in mass extinctions and their aftermaths [5]. Mass extinctions

can have distinct patterns of selectivity relative to surrounding time intervals [8] with regards to factors like geographic range, body

size, ecology, and physiology.

For instance, geographic range is a major predictor of background extinction risk, with small ranges generally coinciding with

higher extinction risk [140], but during the end-Ordovician and KPg extinction geographic location was key [137,141]. Large bodied

taxa can also be preferentially lost at extinction boundaries [18], as happened in PT ecosystems [47,142,143] and KPg terrestrial

faunas [144], but there are exceptions [145,146]. Ecological and physiological selectivity, in turn, depends on the extinction drivers.

Examples include the selective loss of carnivores and herbivores relative to detritivores across the KPg [24], the heavy losses of

marine predators in the PT and KPg [16,26], preferential loss of calcifiers during the PT, TJ, and KPg [22,25,147], and preferential

loss of physiologically unbuffered taxa during the PT [46]. The important commonality is that selectivity across mass extinctions

can be distinct from the selectivity of surrounding intervals. Because of this, once abundant lineages can go abruptly extinct across

extinction boundaries or suffer very high levels of extinctions.

What’s more, selectivity during the extinction determines the phylogenetic, ecological, and biogeographic character of the sur-

viving fauna, and this can have long-term effects [11]. For instance, the extinction of the once-diverse fusulinid foramininiferans

during the PT mass extinction coincided with a change in the relationship between body size in foraminifera and atmospheric

CO2 concentration (coupled before, decoupled after) [148]. Perhaps most importantly, the chance filling of emptied niches in

the aftermath of mass extinctions often allows taxa with previously circumscribed diversity or abundance to radiate or increase

in abundance (see ‘winners’ in Box 1 for examples).
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between localities by up to millions of years and followed closely

on the amelioration of low oxygen or high temperature conditions

[57,58]. Such variation in the spatial distribution of change is

common across many large biotic events. Patterns vary by

habitat as well. Although ammonites suffered very high levels

of extinction during the end-Permian, they diversified within

the first 2 million years after the extinction [59,60]. Conodonts

and marine tetrapods, also pelagic groups, likewise radiated in

the earliest Triassic [33,61–63]. Benthic taxa, by contrast, gener-

ally took more than 5 million years to fully recover pre-extinction

levels of diversity and community complexity — perhaps due to

ongoing, environment-specific disturbance like periodic oxygen

stress [57,58]. Alternatively, rapid radiations in groups such as

ammonites and conodonts might also partially reflect higher

than average speciation rates at all times [62]. Regardless of

the cause, variation in diversification rates amongst taxa is

typical of mass extinction aftermaths more generally. On land,

some ecological strategies lost at the extinction boundary re-

evolved immediately while others, like small-bodied insectivory

and large bodied herbivory, took more than 15-million years to

reappear [64], resulting in distinct Early Triassic food-web struc-

tures in the meantime [65].

The existence of, and variability in, post-extinction ecosys-

tems can be critical for interpreting the cause of macroevolu-

tionary patterns. For instance, after the PT, diversification rates

cannot be reasonably interpreted without considering how envi-

ronmental and ecological conditions varied across clades and

sites. Following a one-million year long post-PT low, ammonite

diversity increased rapidly, recovering within two million years

of the Triassic [59]. If just the extinction is considered, a reason-

able explanation for this explosive diversification is that low spe-

cies richness released taxa from the pressures of interspecific

competition and led to rapid diversification and niche space

filling until a new equilibrium was reached [4]. However, the

importance of interspecific competition in pacing the recovery

is called in to question by tracers of environmental change

[66]. These show that ammonite diversification began precisely
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as the carbon cycle stabilized [60]. A leading hypothesis for the

dynamics of the carbon cycle in the aftermath of the PT extinc-

tion is that it reflects ongoing Siberian trap eruptions [19]. If

this is the case, we might interpret ammonite diversification as

being held back, at least at the start, by environmental condi-

tions. Yet another hypothesis combines biological and environ-

mental drivers of diversification to posit that ammonites and con-

odonts are inherently more dynamic thanmost benthic taxa. This

is due to higher background rates of origination and extinction,

enabling them to more closely track environmental conditions

[62]. In short, the key to a comprehensive theory of macroevolu-

tion may really lie in understanding the balance in evolution be-

tween factors intrinsic to the system, such as intraspecific

competition, and extrinsic to it [16], such as environmental

disturbance from volcanoes. In this regard, mass extinctions dy-

namics may be particularly unique.

Understanding how it is possible for unusual ecosystems to

persist in the aftermath of extinctions can offer insights into the

balance and relative importance of intrinsic and extrinsic drivers

of macroevolution. Extensive research has documented the ex-

istence of unusual ecosystems in the aftermath of extinctions,

but how and why these intervals occur is still in question. One

possibility is that evolving ecosystems lead to the re-diversifica-

tion of species, with increased ecosystem complexity providing

more niches and opportunities for ever more species. If this is

generally true, then the slow pace of ecosystem change (thou-

sands to millions of years) has yet to be explained. Alternatively,

it could be the other way around — species re-diversification

leading to changes in ecosystem structure and function — but

the pattern and timing of change suggest otherwise.

Earth System Succession
In the period before geologically stable ecosystems are re-es-

tablished, post-extinction communities and biogeochemical cy-

cles are often highly dynamic, in a fashion seldom observed

outside of such times. In some cases, the extinction-causing

perturbation is thought to be on-going throughout the entirety
er Ltd All rights reserved
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Figure 2. Extinctions and ecological
change.
Mass extinctions are characterized by elevated
extinction rates relative to background (upper
panel) and long-lasting ecosystem change (lower
panel). Over the Phanerozoic, background rates of
extinction in shelly marine invertebrates have
generally declined (grey bars, upper panel), with
the Big Five mass extinctions (red bars) standing
out as relative lows in standing diversity (black line).
Step changes in community structure (one exem-
plar, black line, lower panel) and complexity (grey
triangles, lower panel) coincide with the largest of
the Big Five mass extinctions. This figure is a
composite of information from previously pub-
lished papers: % extinction [2], number of genera
[149],%motility [13],% complex assemblage [35].
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of the strange aftermath interval, such that both themass extinc-

tion and the dynamic post-extinction world have the same driver.

This may be the case for the PT mass extinction. After the PT,

multiple lines of evidence tie on-going Siberian trap volcanism

to environmental disturbance [16,19]. For instance, some of

the same factors thought to be involved in the extinction, such

as volcanic outgassing, erosion, productivity and anoxia, are

observed for millions of years after the extinction [19,23,67,68].

Because the re-evolution of pre-extinction-like complexity in

ecosystems occurs once these environmental disturbances

disappear [16,57,58], this suggests that the strange aftermath

of the PT, like the extinction, was driven by volcanism. However,

the timing of eruptions relative to environmental and ecological

dynamics is still in question [42], leading others to argue that

the strange PT aftermath is instead driven by the unusual struc-

ture and function of the low diversity, post-extinction ecosys-

tems [60,69].

For extinctions where the trigger is short-lived compared to

the duration of the aftermath, the role of ecological drivers in

the aftermath is relatively uncontested. For instance, the KPg

mass extinction is tied to the impact of a massive bolide, likely

an asteroid, into the Yucatan Peninsula [70] — a geologically

instantaneous event. Across the KPg boundary, the two main

calcifying clades in the open ocean, coccolithophores (marine

algae) and planktonic foraminifera (heterotrophic protists), suf-

fered high levels of extinction with more than 90% of species

lost [71,72]. In the roughly million years after the KPg impact,

both groups were characterized by a succession of short-lived,

low-diversity communities [73,74]. In each successive commu-

nity, a single species dominated the assemblage, accounting

for the vast majority of fossils. Surprisingly, turnover between

the dominance of one species to the next appears unrelated to

their evolutionary first appearance 10s–100s of thousands of

years earlier [17]. Instead, community turnover is simply a shift

in the relative abundance of taxa — one rising to dominance,

while the other falls [74,75]. What leads these communities to
Current Biology 25, R941–R952, October 5, 2015 ª
turnover is unclear, as many successive

communities appear functionally identical

to the level that can be resolved in fossils.

A second strange aspect of the sequen-

tial community turnover is the timing —

both the total duration of the low

complexity interval and the frequency of

turnover occur on very long-time scales compared to ecological

mechanisms. On much shorter time scales of days to centuries,

the sequential replacement of communities after disturbance is

a well-known ecological phenomenon, known as ‘succession’

[76]. A classic example of ecological succession occurs in for-

ests. When a gap is created by a fallen tree, a sequential re-

placement of plant communities ensues from the early arriving

opportunists with characteristics like high dispersal, rapid growth

and high-light needs to the slow growing canopy-forming trees of

mature forests [77]. In succession, sequential replacement is

driven by the interactions among taxa— at any one stage, condi-

tions favor a certain subset of taxa due to some combination of

intra- and inter-specific interactions (directly favoring or disfavor-

ing certain species) and environmental tolerance for the condi-

tions created by earlier communities [77].

Succession occurs on time scales of days to centuries, de-

pending on the system and disturbance in question. After extinc-

tions, the serial replacement of fossil communities looks like

classic ecological succession but on time scales that are much

longer — tens to hundreds of thousands of years. With turnover

and eventual stabilization on such protracted time scales after

extinctions, the communities alive during any given period lived

and thrived in conditions that would have appeared permanent

from one generation to the next. In other words, serial commu-

nity replacement in the aftermath of mass extinctions cannot

be classic ecological succession. So what then causes commu-

nities to change on these very-long time scales? And why is this

dynamic of community turnover often found in intervals of low

fossil diversity?

Perhaps a new type of succession needs to be considered for

these times, that of earth system succession. On a global scale,

the structure and function of ecosystems affects key earth-sys-

tem processes, such as rates of weathering, soil formation,

organic carbon sequestration, nutrient availability and recycling,

and the availability of key substrates such as soils and reefs

[78–80]. These processes move various elements between earth
2015 Elsevier Ltd All rights reserved R945
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Figure 3. Re-diversification in altered
ecosystems.
Re-diversification in the aftermath of mass ex-
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the earth system (middle). As species and eco-
systems re-evolve, earth system feedbacks (i.e.,
earth system succession) pace the direction, na-
ture, and timing of ecosystem turnover (bottom).
Biotic forcing (also referred to as Red Queen dy-
namics) is thus particularly apparent during earth
system succession because it is the ultimate driver
of ecosystem evolution. This contrasts with other
intervals during which environmental change is
physically forced and drives biotic change (also
referred to as ’court jester dynamics’) [150]. Note,
all lines are schematics; functional diversity curve
(bottom) refers to local scale communities (which
exhibit greater change) rather than global scale
compilations. Panels after [18] used with permis-
sion from the Paleontological Society.
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system reservoirs, for instance from the ocean to the atmo-

sphere or from soils to streams. On a global scale, the time it

takes for various elements to move, on average, between reser-

voirs can be quite long (100 years to 10 million years) [81]. As

various earth-system reservoirs and fluxes change, they have

the scope to, in turn, affect ecosystems on a global scale,

because they alter the prevailing nutrient availability and environ-

mental conditions [80,82]. The effect that any given change will

have depends on the relative size of the change, the amount of

those elements in the system, and how they are distributed be-

tween various reservoirs. The term ‘earth system succession’

is used here to describe the sequential change in global ecosys-

tems that occurs as biogeochemical reservoirs and fluxes return

to equilibrium after perturbation.

Earth system succession after mass extinctions and other

large biotic perturbations might naturally be expected if taxa

responsible for key ecosystem functions were affected, as they

sometimes are [38,83], or if the perturbation itself significantly

changed a biogeochemical reservoir. Even if the ecological func-

tions could be quickly replaced, the cycling among various

components of the earth system would be altered and out of
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long-term equilibrium. Returning to a

geological stable equilibrium would be

an inherently protracted process, and

would result in subtle shifts in environ-

mental conditions likely to favor different

taxa through time. For instance, earth

system sequestration of CO2 after the

Paleocene-Eocene Thermal Maximum

took somewhere between 120,000 and

220,000 years [84], during which temper-

atures were warmer [85], ocean carbon-

ate saturation state briefly dropped [86],

and the structure and function of ecosys-

tems changed [84,87]. After extinctions,

assuming that low-diversity communities

would also be likely to lack some func-

tional redundancy, dynamic turnover of
communities and geochemical proxies (as is observed) would

be one expectation of the mechanism.

Earth system succession may be occurring in post-extinction

aftermaths. First, mass extinctions generally perturb a major

component of the geosphere (or biogeosphere) directly and/or

cause a lasting change to ecosystem function. Many extinctions

are accompanied by evidence for direct perturbations of the

(bio-)geochemical reservoirs, andmost depend on some change

in these systems to drive the extinction [18,19]. The structure and

function of ecosystems is likewise often changed in the after-

math ofmass extinctions [18,39]. Second, some biogeochemical

perturbations or ecosystem changes appear to have a global ef-

fect on environmental conditions. After the KPg extinction, the

reduction of pelagic carbonate producers, particularly of the

coccolithophores, led to a very high carbonate saturation state

throughout the ocean [88]. The post-extinction interval after the

Triassic-Jurassic mass extinction (Box 1), by contrast, coincides

with a silica deposition boom, perhaps driven by a combination

of increased weathering of new basalts and siliceous sponges

out-competing carbonate corals in the aftermath of an ocean

acidification event [15,89]. Third, there is the suggestion that
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long-term changes in community composition and functionality

may be, in turn, shifting global environmental conditions. This

third component has yet to be vetted with coupled ecological

and earth systemmodels— although it is notable that such feed-

backs have been suggested to sometimes cause mass extinc-

tions [90,91]. Together, the rough correspondence between

the stabilization of environmental proxies, the re-establishment

of geologically stable ecosystems, and the recovery of diversity

suggests that earth system succession might drive post-extinc-

tion dynamics.

Although I have named earth system succession in analogy to

ecological succession, there are important differences. Earth

system succession occurs when a change in the biosphere or

the geosphere (that is, a disturbance or innovation) results in

disequilibrium between the various components of the earth

system. In contrast to ecological succession, the final composi-

tion of communities is not known at the start, as new species

and ecological strategies evolve during the course of earth

system succession. Similarly, there is no expected final commu-

nity in earth system succession. Although the earth system is un-

likely to ever be in true geochemical equilibrium, earth system

succession might be considered ‘over’ when the rate and ampli-

tude of change is indistinguishable from times long-outside of

extinction intervals (Figure 3). Finally, whereas ecological suc-

cession implies some predictability of the timing of community

turnover and their likely composition, earth system succession

is unpredictable outside of the recognition that high turnover is

expected after disturbance until a biogeochemical equilibrium

is re-established.

Earth system succession might also prove relevant for under-

standing the effects of environmental change, such as long-term

cooling, that alter biogeochemical reservoirs in the absence of

extinctions, or the effects and rise of key innovations, such as

the evolution of oxygenic photosynthesis (see Primer by Patrick

Shih in this issue) [92], the evolution of pelagic calcifiers [93], and

the evolution of grasses [94]. In each case, as the innovative

clade increased in abundance, often in fits and starts and over

many of millions of years, biogeochemical cycles were funda-

mentally changed. From an ecosystemperspective, the possibil-

ity of earth system succession is important because it means

there may be inherent speed limits on the re-establishment

of geologically stable ecosystems after global biotic distur-

bances. These speed limits would be set by the size of biogeo-

chemical reservoirs and exchange rates between different

biogeochemical reservoirs, and the extent to which they were

out of equilibrium.

It is important to note that earth system succession is closely

related to the concept of ecosystem engineering [95,96] but

differs in scale and end effect. Ecosystem engineering describes

how the activities of a given species affect the success of others

[96]. Ecosystem engineering is often used to describe local ef-

fects, although it can and has been used at the global scale of

earth system succession [96,97]. Earth system succession is

characterized by three important aspects beyond those of global

ecosystem engineering: it is paced by interactions among var-

ious components of the earth system (global); it leads from

less tomore stable earth system dynamics (directional); it occurs

during times of earth system disequilibrium (constrained). In

other words, earth system succession describes the process
Current Biology 25, R941–R
by which the sum effect of numerous local scale changes

(including ecosystem engineering) leads to an ecological

succession-like turnover in global ecosystems on very long

(roughly >1000 year) timescales.

From a macroevolutionary perspective, processes related to

earth system succession might better explain the apparent

timing of radiations, and the ecosystems they give rise to, than

explanations relying on ecological or evolutionary processes

alone. Earth system succession provides an ultimately ecolog-

ical means to account for sustained ecological and evolutionary

trends on very long time scales, a problem that has long inter-

ested paleontologists [98]. In doing so, earth system succession

may provide a general explanation for why and how some

ecological and evolutionary changes take so long to occur.

Innovation and Radiation during Other Times
The abundant evidence for strange ecosystems in the aftermath

ofmass extinctions, including strong feedback between the geo-

sphere and biosphere, raises the question of whether extinction

aftermaths exert a unique influence on the evolution of life. In

other words, aside from the rapid re-diversification of lineages,

is evolution in the aftermath of extinctions qualitatively different

than during the intervals between extinctions? The answer is

decidedly less clear, as two examples illustrate.

The most recent global mass extinction is the Eocene-Oligo-

cene Transition (EOT) �34 million years ago, which is marked

by the onset of Antarctic glaciation [2]. The glaciation of the Ant-

arctic changed the world from one without large continental ice

sheets — a greenhouse world — to one with large continental

ice sheets — an icehouse world. This fundamentally altered

oceanographic and climatic dynamics and is considered the

largest climatic transition of the last 66 million years [99,100]. A

relatively minor extinction event overall (�15% loss of shelly ma-

rine invertebrates [2]), the EOT also showed strange ecosystems

within the first million years likely due to prevailing environmental

conditions [101,102]. After the EOT many clades diversified that

are still dominant today: diatoms radiated [103], ancient whales

(archaeocetes) were replaced by modern whales (odontocetes

and mysticetes) [104], and pinnipeds (i.e., seals, sea lions, and

walruses) diverged from other mammalian carnivores [105].

Surprisingly, from a modern phylogenetic perspective, neither

of the last twomass extinctions, the EOT or the KPg, stand out as

having changed the rate of evolution in lineages leading up to

extant mammals [106] or teleosts [107]. These two groups point

to the Early Eocene Climate Optimum (EECO;�52–50Ma) as the

time when rates of lineage diversification changed. For birds, the

evidence from extant taxa is mixed. A recent species-level phy-

logeny also supports the EECO as the critical transition in rates

of lineage diversification [108], and full-genome sequencing of

48 species supports both the KPg and the EECO in the same

10–15 million year window [109]. While the early Eocene is

well-known as the warmest interval of the Cenozoic [110], it is

strikingly unremarkable from an extinction rate perspective

[71,111]. There are many other reasons that the early Eocene

might standout as a critical time for macroevolution [84], but

the key point is that the ECCO may have been more important

for the macroevolution of modern taxa than either of the last

two mass extinctions. This is not an isolated case, nor is the

inference regarding the importance of intervals likely to be just
952, October 5, 2015 ª2015 Elsevier Ltd All rights reserved R947
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an artifact of using modern-phylogenetic inferences from extant

taxa, as could be the case with the phylogenies discussed

above.

The Cretaceous terrestrial revolution provides another ex-

ample of the importance of the intervals that lie between mass

extinctions, and one based entirely on fossils [112]. During the

Cretaceous, angiosperm plants radiated on land and rose to

dominance, coincident with periods of massive innovation in

terrestrial vertebrates (dinosaurs, mammals, squamates) and in-

sects [112–114].At roughly the same time, near-coastal andopen

ocean marine ecosystems and species underwent an equally

profound revolution in their structure and function [93,115].

This discussion is not meant to demote mass extinctions as

important drivers of the evolution of life, but rather to question

how truly unique they are in their evolutionary effects. There

certainly is widespread paleontological evidence for rapid diver-

sification in the aftermath of mass extinctions [36], including

bursts of morphological innovations [26]. What’s more, state

changes in macroevolutionary dynamics, in origination and

extinction rates, coincide with the largest extinction boundaries

[116,117]. Within clades, important innovations can also appear

in the aftermath of extinctions. For instance, tetrapods invaded

and radiated in the marine realm after the PT and KPg mass ex-

tinctions, perhaps due to the preferential extinction of large

bodied animals and the opening of ecospace after both extinc-

tions [33,118]. Spiny-rayed fishes likewise showed a major

wave of reef colonization after the KPg mass extinction [119],

and increased their abundance and occupation of niche- and

morpho-space relative to cartilaginous fishes at the same time

[26,120]. However, these fishes provide the case in point, in

that the macroevolutionary effects of the KPg mass extinction,

as pronounced as they are, do not appear unique to the bound-

ary interval. The first wave of reef colonization is likely to have

taken place earlier in theCretaceous [119] during a time of gener-

ally high diversification rates [107], and the largest change in

diversification rates in lineages still extant today, a decline,

occurred in the Eocene [107]. While the KPg mass extinction

was certainly important in the macroevolutionary history of

spiny-rayed fishes, other time periods were as well.

It is clear that mass extinctions have profound ecological and

evolutionary effects through the mass death of taxa [3] and by al-

lowing state changes in macroevolutionary dynamics [116,117]

and ecosystem structure [13]. In their aftermaths, a large number

of evolutionary events also occur over a relatively short time as

clades re-diversify, but how important (or distinct) these times

are for macroevolution relative to the intervals between them is

still an outstanding issue. Does the unique selective regime sug-

gested by earth system succession in the aftermath really matter

for macroevolution? This is a question for future studies to

address.

Conclusion
Macroevolution is shaped as much by those who survive as

those who did not [3,121]; it is shaped as much by extinction,

as by innovation and speciation [3,122]. More than 99% of all

the species that have ever lived are now extinct [3], and the los-

ses have often been distinctly non-random [7,8]. The largest bi-

otic crises eliminate entire branches of the tree of life [1], drive the

decline of once diverse clades [123], and lead to the radiation of
R948 Current Biology 25, R941–R952, October 5, 2015 ª2015 Elsevi
new species and ecosystems [13,124,125]. In the prolonged

aftermath, ecosystem change across the globe exerts an evolu-

tionary influence distinct from the extinction itself, with a timing

characteristic of the earth system (i.e., earth system succession).

As such, mass extinctions should not be considered as macro-

evolutionary point events, but rather as prolonged intervals of

varying selection spanning themass death and subsequent radi-

ation of taxa.

Beyond this, a general macroevolutionary understanding of

the importance of mass extinctions relative to other events in

earth history will require an understanding of why innovations

and radiations characterize the intervals in between extinctions

perhaps even more so than the aftermaths of the extinctions

themselves. This is an exciting area of research as detailed pale-

ontological, geochemical, geological and phylogenetic datasets

are just now becoming available to compare between them. Only

an estimated 4% of species extinctions in the last half billion

years of life coincided with one of the Big Five mass extinctions

[3], but most species that have ever existed are now dead and

those losses have shaped the history of life. An integrative under-

standing of the role of extinction and speciation in macroevolu-

tion has yet to be achieved but is central to understanding the

evolution of life.

ACKNOWLEDGEMENTS

This manuscript was much improved by thoughtful feedback from J. Burke,
D.H. Erwin, N.J. Planavsky, D.E. Penman, E.E. Saup, L.G. Tarhan, three
anonymous reviewers, and the editor F. Maderspacher, and the ideas were
encouraged by brief discussions with D.E.G. Briggs, M.J. Henehan, and S. Fin-
negan. L.E. Elder and A.Y. Hsiang are gratefully acknowledged for their help in
constructing Figure 2 and illustrating the jester hat and crown in Figure 3,
respectively.

REFERENCES

1. Raup, D.M., and Sepkoski, J.J. (1982). Mass extinctions in the marine
fossil record. Science 215, 1501–1503.

2. Bambach, R.K. (2006). Phanerozoic biodiversity mass extinctions. Annu.
Rev. Earth Planet. Sci. 34, 127–155.

3. Raup, D.M. (1994). The role of extinction in evolution. Proc. Natl. Acad.
Sci. USA 91, 6758–6763.

4. Condamine, F.L., Rolland, J., and Morlon, H. (2013). Macroevolutionary
perspectives to environmental change. Ecol. Lett. 16, 72–85.

5. Jablonski, D. (2005). Mass extinctions andmacroevolution. Paleobiology
31, 192–210.

6. Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B.,
Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C.,
et al. (2011). Has the Earth’s sixth mass extinction already arrived? Na-
ture 471, 51–57.

7. Green, W.A., Hunt, G., Wing, S.L., and DiMichele, W.A. (2011). Does
extinction wield an axe or pruning shears? How interactions between
phylogeny and ecology affect patterns of extinction. Paleobiology 37,
72–91.

8. Jablonski, D. (1986). Background andmass extinctions: the alternation of
macroevolutionary regimes. Science 231, 129–133.

9. Sheehan, P.M., Fastovsky, D.E., Hoffmann, R.G., Berghaus, C.B., and
Gabriel, D.L. (1991). Sudden extinction of the dinosaurs: latest Creta-
ceous, Upper Great-Plains, USA. Science 254, 835–839.

10. Brusatte, S.L., Butler, R.J., Barrett, P.M., Carrano, M.T., Evans, D.C.,
Lloyd, G.T., Mannion, P.D., Norell, M.A., Peppe, D.J., Upchurch, P.,
et al. (2015). The extinction of the dinosaurs. Biol. Rev. 90, 628–642.
er Ltd All rights reserved

http://refhub.elsevier.com/S0960-9822(15)01069-6/sref1
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref1
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref2
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref2
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref3
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref3
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref4
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref4
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref5
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref5
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref6
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref6
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref6
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref6
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref7
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref7
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref7
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref7
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref8
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref8
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref9
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref9
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref9
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref10
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref10
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref10


Current Biology

Review
11. Krug, A.Z., Jablonski, D., and Valentine, J.W. (2009). Signature of the
end-Cretaceous mass extinction in the modern biota. Science 323,
767–771.

12. Erwin, D.H. (1998). The end and the beginning: recoveries frommass ex-
tinctions. Trend. Ecol. Evol. 13, 344–349.

13. Bambach, R.K., Knoll, A.H., and Sepkoski, J.J. (2002). Anatomical and
ecological constraints on Phanerozoic animal diversity in the marine
realm. Proc. Natl. Acad. Sci. USA 99, 6854–6859.

14. Hull, P.M., Darroch, S.A.F., and Erwin, D.H. (2015). Rarity in mass extinc-
tions and the future of ecosystems. Nature, in press.

15. Ritterbush, K.A., Bottjer, D.J., Corsetti, F.A., and Rosas, S. (2014). New
evidence on the role of siliceous sponges in ecology and sedimentary
facies development in Eastern Panthalassa following the Triassic-
Jurassic mass extinction. Palaios 29, 652–668.

16. Chen, Z.-Q., and Benton, M.J. (2012). The timing and pattern of biotic
recovery following the end-Permian mass extinction. Nat. Geosci. 5,
375–383.

17. Hull, P.M., Norris, R.D., Bralower, T.J., and Schueth, J.D. (2011). A role
for chance in marine recovery from the end-Cretaceous extinction. Nat.
Geosci. 4, 856–860.

18. Hull, P.M., and Darroch, S.A.F. (2013). Mass extinctions and the structure
and function of ecosystems. In Ecosystems Paleobiology and Geobiol-
ogy, Volume 19, A.M. Bush, S.B. Pruss, and J.L. Payne, eds. (The Pale-
ontologicaly Society Short Course. The Paleontological Society Papers).

19. Payne, J.L., and Clapham, M.E. (2012). End-Permian mass extinction in
the oceans: an ancient analog for the Twenty-First Century? Annu. Rev.
Earth Planet. Sci. Vol 40, 89–111.

20. Peters, S.E., and Heim, N.A. (2011). Macrostratigraphy and macroevolu-
tion in marine environments: testing the common-cause hypothesis. In
Comparing the Geological and Fossil Records: Implications for Biodiver-
sity Studies. Geological Society, London, Special Publications vol. 358,
A.J. McGowan and A.B. Smith, eds., pp. 95–104.

21. Nichols, D.J. (1990). Geologic and biostratigraphic framework of the non-
marine Cretaceous-Tertiary Boundary interval in Western North-Amer-
ica. Rev. Palaeobot. Palynol. 65, 75–84.

22. D’Hondt, S. (2005). Consequences of the Cretaceous/Paleogene mass
extinction formarineecosystems.Annu.Rev.Ecol. Evol.Syst.36, 295–317.

23. Algeo, T.J., and Twitchett, R.J. (2010). Anomalous Early Triassic sedi-
ment fluxes due to elevated weathering rates and their biological conse-
quences. Geology 38, 1023–1026.

24. Sheehan, P.M., and Hansen, T.A. (1986). Detritus feeding as a buffer to
extinction at the end of the Cretaceous. Geology 14, 868–870.

25. Clapham, M.E., and Payne, J.L. (2011). Acidification, anoxia, and extinc-
tion: A multiple logistic regression analysis of extinction selectivity during
the Middle and Late Permian. Geology 39, 1059–1062.

26. Friedman, M. (2010). Explosive morphological diversification of spiny-
finned teleost fishes in the aftermath of the end-Cretaceous extinction.
Proc. R. Soc. B Biol. Sci. 277, 1675–1683.

27. Urbanek, A. (1993). Biotic crises in the history of Upper Silurian grapto-
loids: a palaeobiological model. Hist. Biol. 7, 25–50.

28. Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., and West, G.B.
(2004). Toward a metabolic theory of ecology. Ecology 85, 1771–1789.

29. Sole, R.V., Montoya, J.M., and Erwin, D.H. (2002). Recovery after mass
extinction: evolutionary assembly in large-scale biosphere dynamics.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 697–707.

30. Odling-Smee, J., Erwin, D.H., Palkovacs, E.P., Feldman, M.W., and La-
land, K.N. (2013). Niche construction theory: a practical guide for ecolo-
gists. Q. Rev. Biol. 88, 3–28.

31. Sole, R.V., Saldana, J., Montoya, J.M., and Erwin, D.H. (2010). Simple
model of recovery dynamics after mass extinction. J. Theor. Biol. 267,
193–200.
Current Biology 25, R941–R
32. Benton,M.J., Forth, J., and Langer, M.C. (2014). Models for the rise of the
dinosaurs. Curr. Biol. 24, R87–R95.

33. Kelley, N.P., and Pyenson, N.D. (2015). Evolutionary innovation and ecol-
ogy in marine tetrapods from the Triassic to the Anthropocene. Science
348, 301.

34. Benton, M.J. (2010). The origins of modern biodiversity on land. Philos.
Trans. R. Soc. Lond. B. Biol. Sci. 365, 3667–3679.

35. Wagner, P.J., Kosnik, M.A., and Lidgard, S. (2006). Abundance distribu-
tions imply elevated complexity of post-Paleozoic marine ecosystems.
Science 314, 1289–1292.

36. Alroy, J. (2008). Dynamics of origination and extinction in themarine fossil
record. Proc. Natl. Acad. Sci. USA 105, 11536–11542.

37. Jablonski, D. (2008). Biotic interactions and macroevolution: Extensions
and mismatches across scales and levels. Evolution 62, 715–739.

38. Erwin, D.H. (2008). Extinction as the loss of evolutionary history. Proc.
Natl. Acad. Sci. USA 105, 11520–11527.

39. Droser, M.L., Bottjer, D.J., Sheehan, P.M., andMcGhee, G.R. (2000). De-
coupling of taxonomic and ecologic severity of Phanerozoicmarinemass
extinctions. Geology 28, 675–678.

40. McGhee, G.R., Sheehan, P.M., Bottjer, D.J., and Droser, M.L. (2012).
Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian
(early Carboniferous) crisis had a greater ecological impact than the end-
Ordovician. Geology 40, 147–150.

41. Aberhan, M., and Kiessling, W. (2015). Persistent ecological shifts in ma-
rine molluscan assemblages across the end-Cretaceous mass extinc-
tion. Proc. Natl. Acad. Sci. USA 112, 7207–7212.

42. Burgess, S.D., Bowring, S., and Shen, S.Z. (2014). High-precision time-
line for Earth’s most severe extinction. Proc. Natl. Acad. Sci. USA 111,
3316–3321.

43. Retallack, G.J., and Jahren, A.H. (2008). Methane release from igneous
intrusion of coal during late permian extinction events. J. Geol. 116, 1–20.

44. Ganino, C., and Arndt, N.T. (2009). Climate changes caused by degass-
ing of sediments during the emplacement of large igneous provinces. Ge-
ology 37, 323–326.

45. Meyer, K.M., Kump, L.R., and Ridgwell, A. (2008). Biogeochemical con-
trols on photic-zone euxinia during the end-Permianmass extinction. Ge-
ology 36, 747–750.

46. Knoll, A.H., Barnbach, R.K., Payne, J.L., Pruss, S., and Fischer, W.W.
(2007). Paleophysiology and end-Permian mass extinction. Earth Planet.
Sci. Lett. 256, 295–313.

47. Payne, J.L., Summers, M., Rego, B.L., Altiner, D., Wei, J.Y., Yu,M.Y., and
Lehrmann, D.J. (2011). Early andMiddle Triassic trends in diversity, even-
ness, and size of foraminifers on a carbonate platform in south China: im-
plications for tempo and mode of biotic recovery from the end-Permian
mass extinction. Paleobiology 37, 409–425.

48. Twitchett, R.J. (2007). The Lilliput effect in the aftermath of the end-
Permian extinction event. Palaeogeography Palaeoclimatology Palaeo-
ecology 252, 132–144.

49. Raup, D.M. (1979). Size of the Permo-Triassic bottleneck and its evolu-
tionary implications. Science 206, 217–218.

50. Erwin, D.H. (2006). Extinction: How life on Earth nearly ended 250 million
years ago (Princeton, NJ: Princeton University Press).

51. Erwin, D.H. (1990). The end-Permian mass extinction. Annu. Rev. Ecol.
Sys. 21, 69–91.

52. Erwin, D.H. (2006). Dates and rates: Temporal resolution in the deep time
stratigraphic record. Annu. Rev. Earth Planet. Sci. 34, 569–590.

53. Ausich, W.I., and Bottjer, D.J. (1982). Tiering in suspension-feeding com-
munities on soft substrata throughout the Phanerozoic. Science 216,
173–174.

54. Bottjer, D.J., and Ausich,W.I. (1986). Phanerozoic development of tiering in
soft substrata suspension-feeding communities. Paleobiology 12, 400–420.
952, October 5, 2015 ª2015 Elsevier Ltd All rights reserved R949

http://refhub.elsevier.com/S0960-9822(15)01069-6/sref11
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref11
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref11
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref12
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref12
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref13
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref13
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref13
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref14
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref14
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref15
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref15
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref15
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref15
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref16
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref16
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref16
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref17
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref17
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref17
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref18
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref18
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref18
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref18
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref19
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref19
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref19
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref21
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref21
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref21
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref22
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref22
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref23
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref23
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref23
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref24
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref24
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref25
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref25
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref25
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref26
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref26
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref26
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref27
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref27
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref28
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref28
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref29
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref29
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref29
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref30
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref30
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref30
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref31
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref31
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref31
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref32
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref32
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref33
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref33
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref33
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref34
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref34
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref35
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref35
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref35
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref36
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref36
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref37
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref37
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref38
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref38
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref39
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref39
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref39
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref40
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref40
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref40
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref40
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref41
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref41
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref41
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref42
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref42
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref42
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref43
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref43
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref44
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref44
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref44
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref45
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref45
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref45
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref46
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref46
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref46
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref47
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref47
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref47
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref47
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref47
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref48
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref48
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref48
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref49
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref49
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref50
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref50
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref51
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref51
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref52
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref52
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref53
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref53
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref53
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref54
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref54


Current Biology

Review
55. Pruss, S., Fraiser, M., and Bottjer, D.J. (2004). Proliferation of Early
Triassic wrinkle structures: Implications for environmental stress following
the end-Permian mass extinction. Geology 32, 461–464.

56. Baud, A., Richoz, S., and Pruss, S. (2007). The lower Triassic anachro-
nistic carbonate facies in space and time. Global Planet. Change 55,
81–89.

57. Pietsch, C., and Bottjer, D.J. (2014). The importance of oxygen for the
disparate recovery patterns of the benthic macrofauna in the Early
Triassic. Earth-Sci. Rev. 137, 65–84.

58. Twitchett, R.J., Krystyn, L., Baud, A., Wheeley, J.R., and Richoz, S.
(2004). Rapid marine recovery after the end-Permian mass-extinction
event in the absence of marine anoxia. Geology 32, 805–808.

59. Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Bruhwiler, T., Goude-
mand, N., Galfetti, T., and Guex, J. (2009). Good genes and good luck:
Ammonoid diversity and the end-Permian mass extinction. Science
325, 1118–1121.

60. Whiteside, J.H., andWard, P.D. (2011). Ammonoid diversity and disparity
track episodes of chaotic carbon cycling during the early Mesozoic. Ge-
ology 39, 99–102.

61. Thomson, T.J., and Droser, M.L. (2015). Swimming reptiles make their
mark in the Early Triassic: Delayed ecologic recovery increased the pres-
ervation potential of vertebrate swim tracks. Geology, G36332.1.

62. Stanley, S.M. (2009). Evidence from ammonoids and conodonts for mul-
tiple Early Triassic mass extinctions. Proc. Natl. Acad. Sci. USA 106,
15264–15267.

63. Orchard, M.J. (2007). Conodont diversity and evolution through the latest
Permian and Early Triassic upheavals. Palaeogeography Palaeoclimatol-
ogy Palaeoecology 252, 93–117.

64. Benton, M.J., Tverdokhlebov, V.P., and Surkov, M.V. (2004). Ecosystem
remodelling among vertebrates at the Permian-Triassic boundary in
Russia. Nature 432, 97–100.

65. Roopnarine, P.D., Angielczyk, K.D., Wang, S.C., and Hertog, R. (2007).
Trophic network models explain instability of Early Triassic terrestrial
communities. Proc. R. Soc. B Biol. Sci. 274, 2077–2086.

66. Meyer, K.M., Yu,M., Lehrmann, D., van de Schootbrugge, B., and Payne,
J.L. (2013). Constraints on Early Triassic carbon cycle dynamics from
paired organic and inorganic carbon isotope records. Earth Planet. Sci.
Lett. 361, 429–435.

67. Payne, J.L., and Kump, L.R. (2007). Evidence for recurrent Early Triassic
massive volcanism from quantitative interpretation of carbon isotope
fluctuations. Earth Planet. Sci. Lett. 256, 264–277.

68. Meyer, K.M., Yu, M., Jost, A.B., Kelley, B.M., and Payne, J.L. (2011).
delta C-13 evidence that high primary productivity delayed recovery
from end-Permianmass extinction. Earth Planet. Sci. Lett. 302, 378–384.

69. Irmis, R.B., and Whiteside, J.H. (2012). Delayed recovery of non-marine
tetrapods after the end-Permian mass extinction tracks global carbon
cycle. Proc. R. Soc. B Biol. Sci. 279, 1310–1318.

70. Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R.,
Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., et al. (2010).
The Chicxulub asteroid impact and mass extinction at the Cretaceous-
Paleogene boundary. Science 327, 1214–1218.

71. Bown, P. (2005). Calcareous nannoplankton evolution: a tale of two
oceans. Micropaleontology 51, 299–308.

72. Smit, J. (1982). Extinction and evolution of planktonic foraminifera at the
Cretaceous/Tertiary boundary after a major impact. In Geological impli-
cations of impacts of large asteroids and comets on the Earth: Geological
Society of America Special Paper 190, L.T. Silver and P.H. Schultz, eds.,
pp. 329–352.

73. Gerstel, J., and Thunell, R.C. (1986). The Cretaceous/Tertiary boundary
event in the North Pacific: planktonic foraminiferal results from Deep
Sea Drilling Project Site 577, Shatsky Rise. Paleoceanography 1, 97–117.

74. Bown, P. (2005). Selective calcareous nannoplankton survivorship at the
Cretaceous-Tertiary boundary. Geology 33, 653–656.
R950 Current Biology 25, R941–R952, October 5, 2015 ª2015 Elsevi
75. Gerstel, J., Thunell, R., and Ehrlich, R. (1987). Danian faunal succession:
planktonic foraminiferal response to a changing marine environment.
Geology 15, 665–668.

76. Odum, E.P. (1969). Strategy of ecosystem development. Science 164,
262–270.

77. Connell, J.H., and Slatyer, R.O. (1977). Mechanisms of succession in nat-
ural communities and their role in community stability and organization.
Am. Nat. 111, 1119–1144.

78. Naeem, S., Duffy, J.E., and Zavaleta, E. (2012). The functions of biolog-
ical diversity in an age of extinction. Science 336, 1401–1406.

79. Chapin, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M.,
Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E.,
et al. (2000). Consequences of changing biodiversity. Nature 405,
234–242.

80. Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C.,
Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., et al.
(2012). Biodiversity loss and its impact on humanity. Nature 486, 59–67.

81. Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd,
P.W., Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., et al. (2013).
Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6,
701–710.

82. Finzi, A.C., Austin, A.T., Cleland, E.E., Frey, S.D., Houlton, B.Z., and
Wallenstein, M.D. (2011). Responses and feedbacks of coupled biogeo-
chemical cycles to climate change: examples from terrestrial ecosys-
tems. Front. Ecol. Environ. 9, 61–67.

83. Dineen, A.A., Fraiser, M.L., and Sheehan, P.M. (2014). Quantifying func-
tional diversity in pre- and post-extinction paleocommunities: A test of
ecological restructuring after the end-Permian mass extinction. Earth-
Sci. Rev. 136, 339–349.

84. McInerney, F.A., and Wing, S.L. (2011). The Paleocene-Eocene Thermal
Maximum: a perturbation of carbon cycle, climate, and biosphere with
implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516.

85. Zachos, J.C., Dickens, G.R., and Zeebe, R.E. (2008). An early Cenozoic
perspective on greenhousewarming and carbon-cycle dynamics. Nature
451, 279–283.

86. Penman, D.E., Honisch, B., Zeebe, R.E., Thomas, E., and Zachos, J.C.
(2014). Rapid and sustained surface ocean acidification during the Paleo-
cene-Eocene Thermal Maximum. Paleoceanography 29, 357–369.

87. Thomas, E. (2007). Cenozoic mass extinctions in the deep sea: what per-
turbs the largest habitat on Earth? In Large ecosystem perturbations:
causes and consequences: Geological Society of America Special Paper
424, S. Monechi, R. Coccioni, and M.R. Rampino, eds., pp. 1–23.

88. Caldeira, K., Rampino, M.R., Volk, T., and Zachos, J.C. (1990). Biogeo-
chemical modeling at mass extinction boundaries: atmospheric carbon
dioxide and ocean alkalinity at the K/T boundary. In Extinction Events
in Earth History, E. Kauffman and O. Walliser, eds., Vol 30 of the series
‘Lecture Notes in Earth Sciences’. pp. 333–345.

89. Ritterbush, K.A., Rosas, S., Corsetti, F.A., Bottjer, D.J., and West, A.J.
(2015). Andean sponges reveal long-term benthic ecosystem shifts
following the end-Triassic mass extinction. Palaeogeography Palaeocli-
matology Palaeoecology 420, 193–209.

90. Algeo, T.J., and Scheckler, S.E. (1998). Terrestrial-marine teleconnec-
tions in the Devonian: links between the evolution of land plants, weath-
ering processes, and marine anoxic events. Phil. Trans. R. Soc. B Biol.
Sci. 353, 113–128.

91. Lenton, T.M., Crouch, M., Johnson, M., Pires, N., and Dolan, L. (2012).
First plants cooled the Ordovician. Nat. Geosci. 5, 86–89.

92. Lyons, T.W., Reinhard, C.T., and Planavsky, N.J. (2014). The rise of oxy-
gen in Earth’s early ocean and atmosphere. Nature 506, 307–315.

93. Ridgwell, A. (2005). A MidMesozoic Revolution in the regulation of ocean
chemistry. Marine Geology 217, 339–357.

94. Cermeño, P., Falkowski, P.G., Romero, O.E., Schaller, M.F., and Vallina,
S.M. (2015). Continental erosion and the Cenozoic rise of marine dia-
toms. Proc. Natl. Acad. Sci. USA 112, 4239–4244.
er Ltd All rights reserved

http://refhub.elsevier.com/S0960-9822(15)01069-6/sref55
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref55
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref55
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref56
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref56
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref56
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref57
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref57
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref57
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref58
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref58
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref58
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref59
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref59
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref59
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref59
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref60
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref60
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref60
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref61
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref61
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref61
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref62
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref62
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref62
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref63
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref63
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref63
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref64
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref64
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref64
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref65
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref65
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref65
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref66
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref66
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref66
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref66
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref67
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref67
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref67
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref68
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref68
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref68
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref69
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref69
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref69
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref70
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref70
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref70
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref70
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref71
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref71
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref73
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref73
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref73
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref74
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref74
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref75
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref75
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref75
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref76
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref76
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref77
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref77
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref77
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref78
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref78
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref79
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref79
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref79
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref79
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref80
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref80
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref80
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref81
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref81
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref81
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref81
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref82
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref82
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref82
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref82
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref83
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref83
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref83
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref83
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref84
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref84
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref84
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref85
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref85
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref85
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref86
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref86
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref86
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref89
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref89
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref89
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref89
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref90
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref90
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref90
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref90
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref91
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref91
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref92
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref92
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref93
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref93
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref94
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref94
http://refhub.elsevier.com/S0960-9822(15)01069-6/sref94


Current Biology

Review
95. Erwin, D.H. (2012). Novelties that change carrying capacity. J. Exp. Zool.
Part B. 318B, 460–465.

96. Erwin, D.H. (2008). Macroevolution of ecosystem engineering, niche con-
struction and diversity. Trends Ecol. Evol. 23, 304–310.

97. Erwin, D.H. (2015). A public goods approach to major evolutionary inno-
vations. Geobiology 13, 308–315.

98. Hunt, G., and Rabosky, D.L. (2014). Phenotypic evolution in fossil spe-
cies: pattern and process. Annu. Rev. Earth Planet. Sci. 42, 421–441.

99. Coxall, H.K., andWilson, P.A. (2011). Early Oligocene glaciation and pro-
ductivity in the eastern equatorial Pacific: insights into global carbon
cycling. Paleoceanography 26, PA2221.

100. Katz, M.E., Cramer, B.S., Toggweiler, J.R., Esmay, G., Liu, C.J., Miller,
K.G., Rosenthal, Y., Wade, B.S., and Wright, J.D. (2011). Impact of Ant-
arctic circumpolar current development on Late Paleogene ocean struc-
ture. Science 332, 1076–1079.
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