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Abstract

The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2 emissions. How-

ever, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simu-

late diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based

constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response

derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project

(CMIP5). We find in the ESMs a clear linear relationship between present-day evapotranspiration (ET) and gross pri-

mary productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing

an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET

and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model

spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP

in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected

land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the con-

strained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of

the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger

than previously thought, which would have important implications for the rate of increase in the atmospheric CO2

concentration and for future climate change.
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Introduction

The carbon cycle response to climate change constitutes

one of the largest sources of uncertainty in future cli-

mate projections (Bodman et al., 2013; Collins et al.,

2013). A major part of this uncertainty is associated

with terrestrial ecosystems and the so-called land car-

bon sink. About a third of the total annual anthro-

pogenic emissions of CO2 is currently removed from

the atmosphere by this land sink (Sarmiento et al., 2010;

Pan et al., 2011; Ballantyne et al., 2012; Le Qu�er�e et al.,

2015; Sitch et al., 2015), but there is a very large spread

in earth system model (ESM) results concerning its

future evolution in a changing climate (Ciais et al.,

2013). The fate of the land sink depends on the ecosys-

tems’ response to climate change and a myriad of other

factors including nutrient limitations (Ciais et al., 2013)

and changes in extreme events such as droughts and

heat waves (Seneviratne et al., 2012).

Reducing uncertainty in future projections of the

land carbon cycle will require further efforts to improve

ESMs and their land surface models (LSMs), in particu-

lar by addressing incomplete process representation

and alleviating biases identified in these models (Anav

et al., 2013; Piao et al., 2013; Hoffman et al., 2014). This

necessity is underscored by the fact that uncertainties

in simulated features of the terrestrial biosphere might

trigger uncertainties in other aspects of the earth system

(e.g., atmospheric CO2 concentration, air temperature)

due to the feedbacks involving the carbon cycle and the

climate system (Huntingford et al., 2009; Booth et al.,

2012; Arora et al., 2013; Bodman et al., 2013; Friedling-

stein et al., 2014a).

A complementary approach to reduce uncertainties

in future climate projections is to constrain the existing

projections using observed features of the earth system,
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for example, based on relationships between the short-

term (interannual) and long-term (decadal) variations

of some climate variables (Allen & Ingram, 2002; Hall &

Qu, 2006; Knutti et al., 2006; Qu & Hall, 2014). These

emergent constraints are based on the establishment of

statistical relationships between modeled quantities

across a range of models, with the condition that at

least one of these quantities needs to have an observa-

tional constraint. This promising approach to reduce

uncertainties in climate model projections is implicitly

assuming that models showing good performance in

present climate are expected to perform well in future

climate, but this assumption might not hold in all cases

(Knutti, 2008). In addition, one assumes that the models

represent independent realizations of reality and that

their initial spread represents a good measure of our

current level of understanding with regard to the pro-

cess under investigation. Thus, there are clear limita-

tions to the emergent constraints approach, which need

to be recognized when interpreting the results. But at

the same time, it is a powerful approach that allows for

the combination of observational constraints with

future projections.

In the context of carbon cycle projections, Cox et al.

(2013) have constrained the sensitivity of tropical

carbon to climate change as simulated by different cou-

pled climate–carbon cycle models used in the Coupled

Climate Carbon Cycle Model Intercomparison Project

(C4MIP) project using the interannual variability in

atmospheric CO2 as the observational constraint. This

model-derived relationship was based on the fact that

short-term changes in the simulated tropical land car-

bon sink control to a large extent the simulated varia-

tions in atmospheric CO2. The result suggested that the

Amazon forest dieback might be less severe than previ-

ously thought. Nevertheless, changes in other climate

drivers (e.g., precipitation, radiation) might potentially

determine the fate of the tropical land sink in a future

climate. Also, an important question about the future

fate of the terrestrial carbon sink is whether this lower

response to climate change is counteracted by lower

response to CO2 (i.e., CO2 fertilization) in the models as

the balance between the two feedbacks determines the

change in the carbon storage on land (Friedlingstein

et al., 2006). Following the same approach, Wenzel et al.

(2014) found a similar effect of this observational con-

straint on the simulated sensitivity of tropical carbon to

climate change in the CMIP5 models.

In this study, observation-based estimates of evapo-

transpiration (ET) and gross primary productivity

(GPP) are used to constrain long-term terrestrial carbon

cycle projections in CMIP5 models with a primary

focus on GPP. This is motivated by the availability of

new globally gridded observation-based products of

these fluxes (Jung et al., 2011; Mueller et al., 2013),

enabling us to constrain features of the terrestrial car-

bon cycle not merely globally, but also regionally. Fur-

thermore, the net rate of photosynthesis (GPP) is the

initial driver of the carbon uptake by terrestrial ecosys-

tems, thus providing a biogeochemistry-based con-

straint, while ET provides a complementary

hydrologically-based constraint on ecosystems’ func-

tioning. We first explore the statistical relationships

between these fluxes and the future evolution of GPP

and net biome productivity (NBP) in CMIP5 models.

The latter is defined in the models as the difference

between the carbon uptake by photosynthesis and the

carbon release by respiration and disturbance processes

(Prentice et al., 2001). Given the identified relationships,

we then apply the observation-based products to con-

strain future changes in GPP and NBP regionally and

globally and we test the robustness of our results by

showing the sensitivity of the constrained fluxes to dif-

ferent constraint strategies (global or spatially explicit

and GPP, ET or double constraint).

Materials and methods

CMIP5 models

We use gridded estimates of GPP, NBP and ET from an

ensemble of 19 earth system models (Table S1) used in the

framework of the CMIP5 project (Taylor et al., 2012). We ana-

lyze the concentration-driven experiments in which atmo-

spheric CO2 concentrations were prescribed as an input to the

different ESMs. We analyze both the historical period (1989–
2005) and the 21st century based on the RCP8.5 scenario (van

Vuuren et al., 2011). For those models that provided results

from several ensemble simulations, we used only the results

from the first ensemble member.

All CMIP5 data were been interpolated bilinearly to a com-

mon grid with a resolution of 0.5 9 0.5°, corresponding to the

resolution of the observation-based dataset for GPP and ET.

When integrating GPP over different regions, we also

accounted for the land fraction in each grid cell.

Observation-based products for GPP, ET, Temperature
and Precipitation

We use various observation-based datasets for GPP, ET, tem-

perature and precipitation. The products for GPP and ET are

used for the application of the constraints investigated in this

study.

Significant uncertainties remain in contemporaneous GPP

estimates ranging from estimates based on diagnostic models

(Beer et al., 2010; Jung et al., 2011) to oxygen isotopes (Ciais

et al., 1997; Welp et al., 2011) and short-period satellite prod-

ucts (Zhao et al., 2005, 2006; Frankenberg et al., 2011). In this

study, we use for GPP the product of Jung et al. (2011), which

is based on the upscaling of local GPP estimates from a global
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eddy covariance sites network (FLUXNET; Baldocchi et al.,

2001). The dataset is available for the period 1982–2010 with a

spatial resolution of 0.5°. The upscaling was performed using

a machine learning approach based on an algorithm called

model tree ensembles (MTE) described by Jung et al. (2009,

2011). The standard deviation of the 25 ensemble members

generated by the model tree algorithm is provided as a mea-

sure of the spread in the MTE-GPP (Jung et al., 2011). In view

of the large uncertainties in GPP estimates reported in the lit-

erature, we doubled this uncertainty range to define a more

conservative estimate of the likely range for GPP.

In one of our constraint methodologies, we use the global

GPP estimate reported in Beer et al. (2010). This study pro-

vides an observation-based estimate of GPP during the period

1998–2005 of 123 � 8 PgC yr�1 combining different data-dri-

ven approaches to estimate GPP (e.g., model tree ensembles,

artificial neural networks, K€oppen–Geiger cross Biome

approach). This global GPP estimate by Beer et al. (2010) was

used as reference in the Intergovernmental Panel on Climate

Change Fifth Assessment Report (Ciais et al., 2013) and has

the advantage of considering several independent estimates

and methods to quantify global GPP. As with the MTE-GPP

product, we doubled the initial uncertainty range to define a

more conservative estimate of the likely range.

As reference dataset for ET, we use the newly compiled

LandFlux-Eval synthesis product which merges 14 different

individual ET datasets (observation-based, satellite products

and model estimates of ET) over the period 1989–2005 with a

spatial resolution of 0.5° (Mueller et al., 2013). The standard

deviation of the different ET datasets used in the LandFlux-

Eval synthesis product is used as a measure of the spread in

ET. As a sensitivity test, we also used a version of the Land-

Flux-Eval product that includes only diagnostic ET estimates,

that is, excluded the estimates based on land surface models.

We further use as reference datasets for temperature and

precipitation, the products from the University of Delaware

(Willmott & Robeson, 1995) with a spatial resolution of 0.5°
and from the Global Precipitation Climatology Project

(GPCP) with a spatial resolution of 2.5° (Adler et al., 2003),

respectively.

Observational constraint approach

If a relationship exists between an observable characteristic of

the earth system and the future evolution of a given variable

in this system, then observations can be used to constrain this

future evolution. Here, we use GPP and ET observation-based

datasets to constrain the future evolution of GPP and NBP in

CMIP5 projections, based on the relationships we establish in

the result section. The constraint approach consists of exclud-

ing models not lying within the observational likely range

(Fig. S1). The full ensemble of CMIP5 models before applying

the constraint is referred to as the ‘prior ensemble’, while the

model ensemble resulting from the exclusion process is

referred to as the ‘constrained ensemble’. We apply the obser-

vational constraint based on the 1989–2005 period because of

the availability of the LandFlux-Eval ET over this period only.

Two different types of constraint approaches are used here.

We present results from these two types of approaches (in

total four individual constraint approaches; see Table 1 for a

summary) to test the sensitivity of the constrained fluxes to

the used constraint approach.

In the first approach, we constrain the models based on

their ability to simulate global annual GPP (‘GPPglobal’). In

this approach, we consider only models with GPP lying

within the uncertainty range of the global GPP estimate

reported by Beer et al. (2010). This global estimate is of

123 � 16 PgC yr�1 (�2SD), and as a result GFDL, IPSL and

MPI are outside this range and are excluded from the

‘GPPglobal’ constrained ensemble. Anav et al. (2013) in their

comparison of simulated CMIP5-GPP with the MTE-GPP dur-

ing the period 1986–2005 also identified that these models are

simulating higher GPP compared to the observation-based

estimate by Jung et al. (2011).

In the second set of approaches, we apply a spatially expli-

cit (grid point scale), monthly based constraint. The rationale

for developing such a constraint is that models might simulate

the correct present-day GPP and/or ET as a result of compen-

sating regional (or seasonal) biases. Conversely, some models

might perform relatively well in some specific regions/sea-

sons, thus providing relevant regional/seasonal information

while having unrealistic global values. We present three dif-

ferent constraints of this type. In the first one, we constrain the

models based on their performance in simulating present-day

GPP (constraint ‘GPPcon’, models with present-day GPP not

lying within the likely range of the MTE-GPP product are

excluded; Fig. S1a). In the second one, models are constrained

based on their performance in simulating ET (constraint

‘ETcon’, models with present-day ET not lying within the

likely range of the LandFlux-Eval ET product are excluded;

Fig. S1b). The third one combines both the GPP and ET con-

straints (constraint ‘GPP&ETcon’, models with present-day

GPP and ET not lying within the likely range of the MTE-GPP

and LandFlux-Eval ET products, respectively, are excluded;

Fig. S1c). For all of these three approaches, the constraint is

applied for each month and grid cell individually (using the

Table 1 Summary of the various constraint approaches used

in the present study

Name Reference dataset(s) Spatial scale

ETcon LandFlux-Eval

synthesis

dataset (Mueller

et al., 2013)

Application on grid

point, integration

on global scale

GPPcon MTE product

(Jung et al., 2011)

Application on

grid point, integration

on global scale

GPP&ETcon Combined ET

and GPP

constraints

(see ETcon

and GPPcon)

Application on

grid point, integration

on global scale

GPPglobal Beer et al. (2010) Application on

global scale
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likely range of GPP and/or ET for this particular month and

grid cell), meaning that a different set of models can be

selected for different months/grid cells. If at a given grid

point the constraint results in the exclusion of all models, then

this grid point is excluded from the analysis (even if it is the

case only for 1 month) in order not to bias the annual values

due to missing months. Moreover, if one grid cell is excluded

based on one of the constraint approaches, we exclude it from

all other constraint approaches to ensure a consistent compar-

ison between different approaches. As a consequence, the glo-

bal mean results presented here are representative for ca. 80%

of the land area.

Moreover, to test the robustness of our results, we per-

formed additional analyses and included the results in the

Supporting Information. For instance, we used the multimodel

mean to summarize the results of the prior and the con-

strained ensembles, but we also tested the use of the multi-

model median instead of the multimodel mean to insure that

our results are robust, independently of the chosen statistics

(Table S2). We also constrained the models directly based on

annual mean values instead of monthly values (Table S3). In

the case of the annual-based constraints, we also constrained

the models using only the diagnostic datasets of the Land-

Flux-Eval ET (Table S3, line 6).

Analysis for most productive month

Our various constrained approaches consider all months to

derive annual results. However, when presenting maps, we

chose to focus only on the most productive month, defined

for each grid cell as the month having the maximum GPP,

considering a climatology for the period 1989–2005 based

on the MTE-GPP. This choice is motivated by the fact that

the most productive month has a disproportionally large

role in determining the annual mean GPP, even though the

growing season length and other factors are clearly impor-

tant as well (Piao et al., 2007; Xia et al., 2015). The spatial

distribution of the most productive month is shown in

Fig. 1.

Propagation of uncertainty

We define the model spread at a given grid point and for a

given month as the standard deviation of the prior or con-

strained multimodel ensembles. When providing regional and

global means, we aggregated the model spread in space using

the following formula taking into account the spatial covari-

ance.

Let a variable x that is a function of n variables,

x ¼ fðx1; x2; x3; x4; x5; . . .xnÞ ð1Þ
The covariance matrix (n 9 n) can therefore be defined as:

X
¼

covðx1; x1Þ covðx1; x2Þ � � � covðx1; xnÞ
covðx2; x1Þ covðx2; x2Þ � � � covðx2; xnÞ

..

. ..
. . .

. ..
.

covðxn; x1Þ covðxn; x2Þ � � � covðxn; xnÞ

2
6664

3
7775 ð2Þ

When x equals to the sum of the n variables, then the total

variance of x is given by:

Var xð Þ ¼ s2x1 þ s2x2 þ . . .þ s2xn þ cov x1; x2ð Þ þ . . .þ cov x1; xnð Þ
þ cov x2; x1ð Þ þ . . .þ cov x2; xnð Þ þ . . .

ð3Þ
or

Var xð Þ ¼
Xn

i

s2xn þ
Xn

j6¼k

Xn

k6¼j

covðxj; xkÞ ð4Þ

where the first term of [Eqn (4)] is the sum of the variances of

the n components of x [Eqn (1)] and the second term is the

sum of the covariances between the n components of x.

Fig. 1 Spatial distribution of the most productive month based on the MTE-GPP (1989–2005).
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Results

Evaluation of CMIP5 models (GPP, ET, Precipitation
and Temperature)

The spatial distribution of present-day GPP as well as

the CMIP5 multimodel mean bias in GPP over the

1989–2005 period is shown in Fig. 2a, e for the most

productive month. Over most of the world’s areas, the

CMIP5 models generally tend to overestimate GPP as

compared to the MTE product, as already reported in

previous studies for the global average (Anav et al.,

2013; Piao et al., 2013). This overestimation of GPP is

more pronounced over Western North America

(WNA), Central and Southern Africa and Eastern Asia

(EAS), where the models tend to overestimate GPP by

Fig. 2 Mean bias between (a) CMIP5 (multimodel mean) and MTE upscaled GPP (gC m�2 month�1), (b) CMIP5 (multimodel mean)

and LandFlux-Eval ET (mm day�1), (c) CMIP5 (multimodel mean) and University of Delaware temperature (°C) and (d) CMIP5 (multi-

model mean) and GPCP precipitation (mm day�1). Stippling is applied over regions where at least 66% of the models (i.e., 13 of 19)

agree on the sign of the difference (1989–2005). The spatial distribution of GPP, ET, temperature and precipitation based on reference

products is also shown (e–h). Results are shown only for the most productive month.

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 2198–2215
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more than 50%. But we find also regions with negative

bias, that is, the models tend to underestimate GPP by

more than 20% over Central North America (CNA) and

Mexico, in the Southern Amazon and Eurasia. Interest-

ingly, in most regions, the sign of the bias is consistent

across models, indicating that these regional biases are

systematic features of the ESMs. The bias in ET (Fig. 2b)

follows a similar pattern as GPP, that is, ET is generally

overestimated with the notable exception of Eurasia

where the models tend to overestimate ET and under-

estimate GPP. The identified regional differences in the

sign and the magnitude of the bias support our

approach on constraining at grid point scale as some

models might simulate the correct global GPP because

of compensating regional biases. Overall, the systematic

overestimation of GPP and ET on global scale in CMIP5

models possibly points to shortcomings in current cli-

mate models (Anav et al., 2013; Mueller & Seneviratne,

2014).

The biases in simulated GPP and ET are caused by

any combination of wrong parameters, deficiencies in

model structure or biases in the climate forcing. In par-

ticular, biases in climate (Fig. 2e–h) play an important

role as indicated by the regional correlations between

climate biases (temperature and precipitation) and

biases in land fluxes (GPP and ET). For instance, the

cold bias in temperature over Alaska and Northern

Asia (Fig. 2c) might explain the underestimation of

GPP. This interpretation is strengthened by the fact that

temperature is the main limiting factor of terrestrial

ecosystem productivity in northern latitudes (Myneni

et al., 1997; Menzel & Fabian, 1999; Zhou et al., 2001;

Lucht et al., 2002; Gong & Ho, 2003; Linderholm, 2006;

Piao et al., 2007, 2008; Jeong et al., 2011). Also, Fig. 2d

shows that CMIP5 models underestimate precipitation

over large parts of Eurasia, Central North America,

Central America and Mexico and Amazonia. It is there-

fore likely that the underestimation of GPP in these

regions, where productivity is limited by water (Churk-

ina & Running, 1998; Nemani et al., 2003), is related to

underestimation of precipitation. Moreover, wet biases

in precipitation over Africa might partially explain the

overestimation of GPP, because in this region, the pro-

ductivity of ecosystems is limited by water availability

(Camberlin et al., 2007). Interestingly, the biases in GPP

and precipitation over Amazon have the opposite sign

despite the strong water dependence of productivity

(Phillips et al., 2009; Gatti et al., 2014) (results for the

annual mean show similar behavior, not shown).

Enhanced light availability induced by decreased cloud

cover might explain the overestimation of GPP over

parts of Amazon (Graham et al., 2003). Also, other

important limitations on productivity like nutrient

availability could possibly explain the biases in GPP

over Amazon, although this result should not be over-

interpreted as the MTE product is only weakly con-

strained by observations in that region given the lack of

reference FLUXNET sites (there and in the tropics in

general). As for nutrient limitations, we note that mod-

els including nitrogen limitations on productivity

(CESM, CCSM4 and NorESM) do not exhibit a signifi-

cantly different behavior compared to other models not

including this process (Fig. S2). Also, crop representa-

tion in LSMs (Bondeau et al., 2007) drastically affects

the terrestrial carbon cycle and insufficient representa-

tion of agricultural processes might explain the under-

estimation of GPP over parts of Europe and Central

North America, where croplands are a dominant part

of the landscape (Leff et al., 2004).

It should be noted that despite the regional correla-

tions between biases in climate and biases in GPP

(Fig. 2 and also shown by Anav et al., 2015), there is no

clear relationship across models between absolute tem-

perature/precipitation and global GPP for present day

(r = 0.08 and r = �0.53 for temperature and precipita-

tion, respectively). Thus, the existing biases in the phys-

ical forcing do not appear to have a major imprint on

the simulated intermodel spread in GPP. Moreover, off-

line LSM simulations driven with observation-based

forcing still show a large intermodel spread and large

biases (e.g., Piao et al., 2013; Anav et al., 2015; Sitch

et al., 2015). Together, these two findings imply that the

present-day intermodel spread in GPP in the ESMs is

largely driven by differences in the land surface models

and only to a lesser degree by climate (although the cli-

mate biases certainly amplify this spread). Also, it

should be noted that in the majority (ca. 70%) of the

land grid points, there is consistency in the CMIP5

models in terms of their present-day (1989–2005) per-
formance in GPP and precipitation (see Appendix S1

and Fig. S9 in the Supporting Information). In other

words, models that are doing well with regard to GPP

should also do well with regard to the physical forcing,

but this finding is certainly not enough to explain the

large intermodel variations in GPP, given the issues

discussed above.

Emergent Relationships

Most regions of the world exhibit positive intermodel

correlations between present-day GPP and ET (Fig. 3a).

In other words, models simulating higher present-day

GPP also tend to simulate higher present-day ET. This

positive correlation between GPP and ET is expected

because of the tight coupling between transpiration and

photosynthesis at the plant level (Cowan & Farquhar,

1977; Collatz et al., 1991; Sellers et al., 1997 Berry et al.,

2010), despite the relatively simplified representation of

© 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 22, 2198–2215
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stomatal behavior used in current ESMs (Ball–Berry
model). Over many regions, models simulating higher

present-day GPP and ET tend to simulate also a higher

increase in future GPP (Fig. 3b, c). Moreover, a near

linear relationship exists in the models between DGPP

and DNBP, that is, the change in GPP or NBP between

1989–2005 and 2084–2100 (Fig. 3d). This relationship

means that models simulating higher increase in future

GPP tend to simulate higher change in future NBP. This

means that, at the regional scale, the future evolution of

the land carbon sink in the CMIP5 models primarily

depends on the evolution of photosynthetic assimila-

tion implying that observation-based constraints on

DGPP will also strongly constrain DNBP. The strong

relationship between DGPP and DNBP also holds for

other months (Fig. S3), although it tends to vanish in

winter over a few northern regions. This is likely

because of the high sensitivity of respiration to temper-

ature change, which tends to decouple ΔNBP from

ΔGPP. That said, the correlation between annual DGPP

and DNBP at the global scale (Fig. S4) is still substantial

and statistically significant (r = 0.7; P < 0.0001).

These emergent relationships between present-day

GPP and ET and future changes in GPP (and NBP)

combined with a definition of the uncertainty range in

present-day GPP and ET can thus be used to constrain

long-term projections of GPP (and NBP).

Global patterns of constrained GPP

We present here the results of the four constraint

approaches (ETcon, GPP&ETcon, GPPcon and GPPglo-

bal) we applied focusing on the most productive

month. The characteristics of the constrained models

(i.e., the percentage of land grid points where the simu-

lated GPP and ET are not lying within the likely range

of the MTE-GPP and the LandFlux-Eval ET) are shown

in Fig. S5, while the number of retained models for the

GPPcon and ETcon ensembles is shown in Fig. S6.

The spatial pattern of the difference between prior

and constrained future change in GPP is displayed in

Fig. 4 for the four different constrained ensembles.

Over many regions, a remarkable although spatially

quite heterogeneous impact of the constraint on the

(a) (b)

(c) (d)

Fig. 3 Intermodel correlation between: (a) GPP and ET during the most productive month over the period 1989–2005, (b) DGPP

(2084–2100 minus 1989–2005) and GPP (1989–2005), (c) DGPP and ET, and (d) DGPP and DNBP. The correlation is estimated based on a

sample of 19 models. Correlation is shown only over regions where annual GPP is more than 10 gC m�2 yr�1. Dots indicate regions

where the correlation is statistically significant (5% significance level).
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future change in GPP is seen in the all spatially expli-

cit constraint methods, that is, the ETcon, GPP&ETcon

and GPPcon ensembles (Fig. 4a–c). The effect of the

constraint is positive (i.e., higher increase in future

GPP in the constrained ensemble compared to the

prior) mainly over northern and mid-latitudes, while

the effect in the tropics is generally negative (i.e.,

smaller change in future GPP compared to the prior

ensemble). One feature worth mentioning is the strong

increase signal over Central Europe and Eurasia.

Despite regional differences, the different constraint

approaches lead to qualitatively similar results. This

finding reflects the strong correlation between GPP

and ET at the regional scale discussed in the previous

section.

Given the correlations highlighted in the previous

section, the sign of the effect of the constraint on the

future change in GPP directly reflects the sign of the

bias in present-day GPP. In other words, the effect of

the constraint tends to be positive (higher increase in

future GPP) over regions where the models tend to

underestimate the present-day GPP based on the MTE

dataset.

Constraining the future change in GPP based on the

models’ performance in simulating global GPP

(Fig. 4d) shows a spatially smoother picture. In this

case, the effect of the constraint is negative in most of

the word’s regions and the models are simulating on

average a decrease in the future change in GPP (i.e., the

increase in future GPP is homogeneously lower in the

constrained ensemble – also shown in Fig. S7).

Global upscaling-GPP

To constrain annual GPP on a global scale, we applied

the various constraints on each month individually and

then aggregated the results to the annual scale (results

based on constraining directly the annual mean values

instead of each month individually are also given in

Table S3 as a sensitivity test and indicate similar

results). The prior and the constrained global annual

GPP based on the different constraint approaches

(ETcon, GPP&ETcon, GPPcon and GPPglobal) are

shown in Fig. 5a, b.

The constraints result in a relatively consistent and

discernible reduction in both mean GPP and the

(a) (b)

(c) (d)

Fig. 4 Effect of the different constraints on the future change in GPPmax (gC m�2 month�1). The effect is defined as the difference in

the future change (2084–2100 minus 1989–2005) in GPPmax between the prior and the constrained ensembles. Positive values indicate

higher increase in future GPP in the constrained ensemble compared to the prior ensemble.
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intermodel spread for both periods, that is, 1989–2005
and 2084–2100. While the contemporary annual global

GPP based on the CMIP5 (prior) ensemble is

118 � 27.5 PgC yr�1 (Table 2), the constrained values

over the same period are 113.4 � 12.7 PgC yr�1,

99.3 � 10.6 PgC yr�1, 98 � 13.8 PgC yr�1 and 106.6 �
8.37 PgC yr�1 for the ETcon, GPP&ETcon, GPPcon and

GPPglobal constraint approaches, respectively, mean-

ing that the prior multimodel mean GPP is reduced by

5–15% depending on the constraint approach. This is in

line with the fact that the multimodel prior ensemble

overestimates global GPP. Moreover, the intermodel

spread is reduced by about 50% in all constrained

ensembles.

Over the future period (2084–2100), the prior multi-

model ensemble simulates a global mean annual GPP of

Fig. 5 (a) Prior and constrained mean annual global GPP (PgC yr�1) for two time horizons: 1989 to 2005 and 2084 to 2100, (b) prior and

constrained change in annual mean global GPP (DGPP, PgC yr�1), (c) prior and constrained mean annual global NBP (PgC yr�1) for

two time horizons: 1989 to 2005 and 2084 to 2100 and (d) prior and constrained change in annual mean global NBP (DNBP, PgC yr�1).

The change is defined as the difference between (2084–2100) and (1989–2005). Error bars correspond to model uncertainty expressed as

1std of the multimodel mean. Negative numbers for NBP and DNBP correspond to carbon source and decrease in future land sink,

respectively. (The estimates are representative only for about 80% of the total land area as the same number of grid points is compared

for the different constrained ensembles).

Table 2 Prior and constrained estimates of global annual GPP, DGPP and trend in GPP

Name GPP20th (PgC yr�1) GPP21st (PgC yr�1) DGPP (PgC yr�1) Trend2071–2100(PgC yr�2)

Prior 118 � 27.5 164.8 � 38.4 46.8 � 17.5 0.49 (P < 0.01)

ETcon 113.4 � 12.7 160 � 19.8 46.6 � 9.9 0.49 (P < 0.01)

GPP&ETcon 99.3 � 10.6 139.8 � 20.2 40.5 � 9.6 0.45 (P < 0.01)

GPPcon 98 � 13.8 141.3 � 15.9 43.3 � 7.7 0.45 (P < 0.01)

GPPglobal 106.6 � 8.37 145 � 21 38.4 � 12.5 0.41 (P < 0.01)
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164.8 � 38.4 PgC yr�1. Thus, all models agree that GPP

would increase in a future climate with higher CO2

concentration, but the model spread in GPP is consider-

ably larger during the future period. The constrained

GPP over the future period is 160 � 19.8 PgC yr�1,

139.8 � 20.2 PgC yr�1, 141.3 � 15.9 PgC yr�1 and

145 � 21 PgCyr for the ETcon, GPP&ETcon, GPPcon

and GPPglobal constraint approaches, respectively. The

effect of the constraints on mean GPP and model spread

in future is therefore of the same magnitude as in the

historical period. The increase in GPP (future minus

past) is 46.8 � 17.5 PgC yr�1 in the prior ensemble and

slightly smaller in the constrained ensembles, that is,

46.6 � 9.9 PgC yr�1, 40.5 � 9.6 PgC yr�1, 43.3 � 7.7

PgC yr�1 and 38.4 � 12.5 PgC yr�1 in the ETcon, the

GPP&ETcon, GPPcon and GPPglobal constrained

Table 3 Prior and constrained estimates of global annual NBP (positive for sink), DNBP (negative for decrease in the sink) and

trend in NBP (the trend is estimated over the period 2071–2100)

Name NBP20th(PgC yr�1) NBP21st (PgC yr�1) DNBP (PgC yr�1) Trend2071–2100 (PgC yr�2)

Prior 0.98 � 0.79 0.62 � 2.1 �0.36 � 1.62 �0.04 (P < 0.01)

ETcon 0.79 � 0.49 0.04 � 1.73 �0.75 � 0.92 �0.04 (P < 0.01)

GPP&ETcon 0.66 � 0.67 �0.18 � 1.21 �0.84 � 1.34 �0.037 (P < 0.01)

GPPcon 0.37 � 0.54 �0.56 � 1.36 �0.93 � 1.05 �0.027 (P < 0.01)

GPPglobal 0.72 � 0.56 �0.34 � 1.37 �1.06 � 1.03 �0.028 (P < 0.01)

(a) (b)

(c) (d)

Fig. 6 Global annual GPP over the period 1989–2100 (RCP8.5) for the prior (navy blue) and the four different constrained (light blue)

ensembles: (a) ETcon, (b) GPP&ETcon, (c) GPPcon and (d) GPPglobal. Shaded areas represent the model spread expressed as one stan-

dard deviation of the multimodel mean for the prior (cadet blue) and theconstrained (sky blue) ensemble.
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ensembles, respectively (Fig. 5b). The latter result shows

that whereas there might be regional differences on the

effect of the constraint on the future change in GPP

between the GPP&ETcon and the GPPglobal constraint

methodology (as seen on Fig. 4), the overall effect on the

future change is comparable between the two different

approaches. Moreover, the prior spread of

17.5 PgC yr�1 in the projected increase in GPP is

reduced between about 30% and 56% depending on the

constraint approach.

The temporal evolution of global annual GPP for the

prior and the constrained ensembles over the period

1989–2100 is displayed in Fig. 6. Over the period 2071–
2100, Fig. 6 shows a significant increasing trend (5%

significance level) in GPP in both the prior

(0.49 PgC yr�2, P < 0.01) and the different constrained

ensembles. The constrained ensembles indicate a

decreased but still positive significant trend in GPP.

Specifically, the trend is slightly decreased by 8%

(0.45 PgC yr�2, P < 0.01), 8% (0.45 PgC yr�2, P < 0.01)

and 16% (0.41 PgC yr�2, P < 0.01) in the GPP&ETcon,

GPPcon and GPPglobal constrained ensembles, respec-

tively, while the ETcon ensemble shows no overall

(a) (b)

(c) (d)

Fig. 7 Global NBP over the period 1989–2100 (RCP8.5) for the prior (navy blue) and the four different constrained (light blue) ensem-

bles: (a) ETcon, (b) GPP&ETcon, (c) GPPcon and (d) GPPglobal. Shaded areas represent the model spread expressed as one standard

deviation of the multimodel mean for the prior (cadet blue) and the constrained (sky blue) ensemble. Negative numbers correspond to

carbon source.

Fig. 8 Cumulative probability distribution for global annual

NBP for the prior and the constrained ensembles for the period

2071–2100. Negative numbers correspond to carbon source. The

likelihood ranges are defined according to IPCCs guidelines.
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change in the trend (0.49 PgC yr�2, P < 0.01). Our

results show remarkable agreement between the con-

strained ensembles on the reduction in the intermodel

spread. This spread is at least 45–50% smaller in the

constrained ensembles than the one in the prior, while

the magnitude of this reduction is almost constant in

time.

Results based on constraining the annual mean

instead of each monthly individually are given in

Table S3. These results are similar to the results based

on the monthly based constraint approach.

Global upscaling-NBP

Given the strong positive correlation between future

changes in GPP and in NBP inferred from the CMIP5

models, we applied the observational constraint

approaches to NBP as well. The CMIP5 multimodel

mean annual NBP over the period 1989–2005 is

0.98 � 0.79 PgC yr�1 globally (carbon sink) (Table 3).

Fig. 5c shows that the magnitude of this sink is reduced

in all the constrained ensembles. Specifically, the con-

strained global NBP over the period 1986–2005 is

0.79 � 0.49 PgC yr�1, 0.66 � 0.67 PgC yr�1, 0.37 �
0.54 PgC yr�1 and 0.72 � 0.56 PgC yr�1 for the ETcon,

GPP&ETcon, GPPcon and GPPglobal constraint

approaches, respectively. Over the period 2084–2100,
the prior multimodel ensemble indicates a net carbon

sink of 0.62 � 2.1 PgC yr�1. Interestingly, the terres-

trial biosphere seems to shift from a net carbon sink to

a net carbon source in most of the constrained ensem-

bles. Specifically, NBP based on GPP&ETcon is

�0.18 � 1.21 PgC yr�1, �0.56 � 1.36 PgC yr�1 for the

GPPcon and �0.34 � 1.37 PgC yr�1 for the GPPglobal

constraints. In contrast, the terrestrial biosphere still

acts as a small carbon sink in the ETcon

(0.04 � 1.73 PgC yr�1) despite the substantial reduc-

tion in the magnitude of the net carbon uptake in this

constrained ensemble. The model spread over the

future period is reduced between 15 and 35% depend-

ing on the constraint approach, but it is larger com-

pared to the historical period.

The change in NBP from the historical to the future

period in the prior multimodel ensemble is

�0.36 � 1.62 PgC yr�1 (Fig. 5d) implying a decreasing

land carbon sink. The constrained ensembles show a

stronger decrease in the land carbon sink by the end

of the 21st century. Specifically, the future change in

NBP is �0.75 � 0.92 PgC yr�1, �0.84 � 1.34 PgC yr�1,

�0.93 � 1.05 PgC yr�1 and �1.06 � 1.03 PgC yr�1 for

the ETcon, GPP&ETcon, GPPcon and GPPglobal con-

strained ensembles. Furthermore, the prior spread of

1.62 PgC yr�1 in the future change in NBP is reduced

between about 17% and 45% depending on the con-

straint approach. The magnitude of the land sink is

substantially decreased in the 21st century in the differ-

ent constrained ensembles and the terrestrial biosphere

in most of the constrained ensembles is even turned

into a net carbon source by the end of the century. The

intermodel spread in DNBP, however, remains large in

the GPP&ETcon constrained ensemble despite the sub-

stantial reduction in the magnitude of the net carbon

sink.

Figure 7 shows time series of the net land to atmo-

sphere carbon flux for the prior and the constrained

ensembles over the period 1989–2100. Over the period

2071–2100, the prior model ensemble simulates a small

significant decreasing trend (5% significance level) in

NBP of �0.04 PgC yr�2 (P < 0.01), while over the same

period, the constrained ensembles simulate a weaker

decreasing trend of �0.037 PgC yr�2 (P < 0.01),

�0.027 PgC yr�2 (P < 0.01) and �0.028 PgC yr�2

(P < 0.01) for the GPP&ETcon, GPPcon and GPPglobal

constrained ensembles, while the ETcon ensemble

shows (as in GPP) no change in the trend

(�0.04 PgC yr�2, P < 0.01). Therefore, the sign in the

NBP trend over the future period in the constrained

ensembles is consistent with the sign in the prior trend.

Interestingly, the constrained ensembles show a less

dramatic decreasing trend in future NBP despite the

massive decrease in the magnitude of the land sink in

these ensembles.

The cumulative probability distributions of the

annual NBP over the period 2071–2100 in Fig. 8 reveal

an increased probability of the land becoming a source

of carbon to the atmosphere in the different constrained

ensembles. While the likelihood of land source of car-

bon to the atmosphere is less than 10% in the prior

ensemble, this likelihood increases to about 30% for the

ETcon case and all the way up to 93% for the GPPcon

case.

Discussion

In this study, we use observation-based fluxes of ET

and GPP to constrain 21st century terrestrial carbon

cycle projections from an ensemble of 19 earth system

models used in the framework of the CMIP5 project. In

contrast with previous studies (Cox et al., 2013; Wenzel

et al., 2014), the use of global gridded products enables

us to evaluate the models regionally and then constrain

the land carbon projections both regionally and glob-

ally. The rationale underlying this strategy is that a

given model might capture relatively well the globally

averaged present-day GPP due to compensating regio-

nal biases, whereas another globally biased model

might still perform well in some regions. On the basis

of a globally averaged constraint, the first model would
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be kept, despite having ‘a right answer for a wrong

reason’ and the second model would be rejected,

despite holding relevant information regionally. Apply-

ing the constraint in a spatially explicit way alleviates

this issue and still enables us to aggregate results glob-

ally, although this approach also introduces additional

challenges (e.g., characterization of the ‘observational

uncertainty’ at the regional scale; possible mismatch in

vegetation types between observation-based products

and models). Moreover, it should be highlighted that

this type of constraint makes use of ‘more information’

than the standard global approach where one model is

either in or out of the ensemble, that is, none of the

models is entirely discarded, each model has some skill

in at least some regions, and this information con-

tributes to the final results. Interestingly, the two inde-

pendent spatially explicit constraints (GPPcon and

ETcon) show in several ways qualitatively similar

effects on the future change in terrestrial carbon cycle

projections in terms of both regional changes and inter-

model spread, although the ET constraint leads to a

smaller reduction in the projected mean changes in

GPP and NBP. We also show that constraining the

models following commonly applied methodologies

based on their performance in simulating quantities on

global scale (e.g., global GPP) might lead to spurious

spatially distributed constrained fluxes as the models

might share regional compensating biases in simulating

global GPP.

Uncertainties related to the observation-based products

One of the main challenges faced by such approaches

relates to the reliability of the observation-based prod-

ucts. For instance, the MTE product is subject to uncer-

tainties related to the representativeness of the

FLUXNET network and the partitioning approach of

net ecosystem exchange (NEE) to GPP and respiration

(Reichstein et al., 2005; Lasslop et al., 2010). Its most

robust features are believed to be the representation of

spatial and seasonal variations, while there is less confi-

dence in the interannual variability and trends of the

product (Jung et al., 2011) as well as in the global inte-

gral. We doubled the uncertainty range in the reference

products for GPP to define a more conservative esti-

mate of GPP as it is anticipated that the published

uncertainty range is likely underestimated. We decided

against the use of alternative products for GPP for sev-

eral reasons. For instance, while the satellite-based GPP

from the Moderate Resolution Imaging Spectrora-

diometer (MODIS) (Zhao et al., 2005, 2006; Mao et al.,

2012) is a potentially interesting alternative estimate for

GPP, it covers an overly short period. For the same rea-

son, we also did not use a recent spatially explicit esti-

mate of GPP based on chlorophyll fluorescence

(Frankenberg et al., 2011). Estimates of global GPP

based on oxygen isotopes (Welp et al., 2011) are higher

(150–175 PgC yr�1) compared to the observation-based

products from Jung et al. (2011) and Beer et al. (2010),

but they do not provide spatiotemporal patterns of the

flux which are necessary to our spatially explicit con-

straint approach. Moreover, the estimate from Welp

et al. (2011) is subject to large uncertainties as they had

only a limited number of observations available and

also used a relative simple model (Anav et al., 2013).

Bearing in mind the above uncertainties in the various

estimates of GPP, we used the products from Jung et al.

(2011) and Beer et al. (2010) as reference datasets for

GPP. The LandFlux-Eval ET product (Mueller et al.,

2013) has a large spread, as it considers different model

products, diagnostic and reanalysis ET datasets. This

large spread adds confidence to our methodology as

the uncertainties associated with ET are rather over

than underestimated. One of the major sources of

uncertainties in this product might be related to the

inclusion of model-based datasets. It should be noted

that these model-based estimates are not found to be

systematically less realistic than diagnostic ET datasets

(Greve et al., 2014). Nevertheless, even when using the

diagnostic datasets only as a constraint, the results go

in the same direction as when using the full LandFlux-

Eval ET dataset (Table S3).

Constrained GPP projections

The application of the constraints reduces not only the

intermodel range in GPP by about 50%, but it reduces

also the increase in the simulated future GPP. This ele-

vated GPP under the future scenario (RCP8.5) com-

pared to present-day GPP reflects a fertilization effect

due to higher atmospheric CO2 concentration depend-

ing on the nature of future CO2 scenario applied (here

RCP8.5) and possibly also the positive effect of climate

change in some regions (e.g., warmer and longer grow-

ing season at high latitudes) (Cramer et al., 2001;

Friedlingstein et al., 2006; Piao et al., 2007; Schimel

et al., 2015; Xia et al., 2015). The finding of a reduction

in the constrained global GPP is consistent with results

from recent studies (Anav et al., 2013; Piao et al., 2013)

confirming that the state-of-the-art LSMs tend to over-

estimate GPP – at least when compared to the MTE

product. It is not possible to identify potential drivers

of this overestimation with the prescribed CO2 simula-

tions used in this study as these simulations include

both the effect of increased CO2 and the effect of cli-

mate change on the terrestrial carbon cycle. Neverthe-

less, nutrient availability might be considered as a

prime candidate for the high response to CO2 and the
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overestimation of GPP in CMIP5 models as most of the

CMIP5 models (except CCSM4.0, CESM and NorESM)

are ignoring nutrient limitations on plant productivity.

The availability of these nutrients substantially affects

the carbon uptake by plants (Norby et al., 2010; Vitou-

sek et al., 2010; De Vries, 2014; Fern�andez-Mart�ınez

et al., 2014) and may even accelerate future climate

change (Zaehle et al., 2010). Also, it is found that nutri-

ent availability reduces the response to CO2 in contem-

porary carbon cycle simulations (Thornton et al., 2007;

Zhang et al., 2011, 2013) although these constrained

simulated responses might still subject to large uncer-

tainties (Thomas et al., 2013). It should be noted that

Sun et al. (2014) argued recently that GPP might be in

fact underestimated because of the inadequate repre-

sentation of CO2 diffusion inside leaves. But results

from free-air CO2 enrichment (FACE) experiments

(Ainsworth & Long, 2005; Norby, 2011) in a limited

number of temperate forest sites suggest the opposite

(Piao et al., 2013). Thus, for the moment, we consider

the MTE product as the best available estimate for con-

straining GPP, recognizing its uncertainties.

The effects on the projected mean change in GPP are

less consistent between ET- vs. GPP-based constraints,

with almost not change for ETcon and a ca. 20% reduc-

tion for the GPP-based constraints (GPPcon, GPP&ET-

con and global). Using the median of the models

instead of the mean shows similar results of the effect

of the different constraints on the global annual GPP

(Table S2). Consequently, our results are statistically

robust independently of the chosen statistics.

Constrained NBP projections

We find a high correlation in CMIP5 models between

future changes in GPP and in NBP implying that simu-

lated future changes in NBP are primarily driven by

changes in GPP. This model-derived correlation

between DGPP and DNBP is also supported by experi-

mental data suggesting that interannual variations in

GPP drive anomalies in NBP (Luyssaert et al., 2007;

Reichstein et al., 2007; Le Maire et al., 2010; Jung et al.,

2011). However, this correlation is remarkable given

the fact that NBP includes the effect of various distur-

bances (e.g., land use changes, and fires, grazing, har-

vesting), which are represented in very different ways

across models and are known to play a critical role in

determining the magnitude of the terrestrial carbon bal-

ance (Sitch et al., 2005; Bond-Lamberty et al., 2007;

Chambers et al., 2007; Kurz et al., 2008; Frolking et al.,

2009; Lindroth et al., 2009; Deb Richter & Houghton,

2011; Houghton et al., 2012; Brovkin et al., 2013). It

should be noted here that land use trends are lower in

all future scenarios compared to the historical period.

In fact, scenarios have several land management

changes affecting NBP and GPP (e.g., bioenergy forests

in RCP8.5), but most ESMs did not distinguish between

managed and primary forests and simply prescribed

maps of forest area. This might also contribute to the

high positive correlation between DGPP and DNBP.

Moreover, future changes in NBP may be influenced by

increased decomposition owing to warmer temperature

(K€atterer et al., 1998; Cox et al., 2000; Rustad et al., 2001;

Knorr et al., 2005; Davidson & Janssens, 2006; King

et al., 2006) and by changes in the turnover time of car-

bon in ecosystems (Carvalhais et al., 2014; Friend et al.,

2014).

We need to consider also the caveats. The identified

relationship between DGPP and DNBP is purely based

on models and cannot be evaluated by observations.

Moreover, it is clear that the existence of a near linear

relationship in the models does not guarantee that this

relationship also holds in reality. For instance, Wang

et al. (2014) found that current land carbon cycle mod-

els do not capture the observed increase in the sensi-

tivity of tropical ecosystems to interannual variations

in temperature over the last 50 years, possibly due to

underestimation of soil moisture effects on the simu-

lated plant productivity. However, this is a fundamen-

tal limitation associated with any proposed emergent

constraint linking long-term changes in the earth sys-

tem to short-term observations of different aspects of

the earth system (Allen & Ingram, 2002; Hall & Qu,

2006; Cox et al., 2013; Wenzel et al., 2014). The confi-

dence in these linkages emerges only through their

robustness across models of very different nature and

construction, employing very different assumptions,

and through process-based arguments. In the case of

the relationship between DGPP and DNBP, we note

that the correlation is very strong across all models

(Fig. 3d) and that the there is a direct mechanistic link

between the two processes, with changes in GPP natu-

rally leading to changes in NBP. Thus, we consider the

relationship as robust and thus proceed to the discus-

sion of the implications of the observation-based con-

straints on NBP, nevertheless keeping in mind the

limitations.

During the historical period (1989–2005), the con-

strained ensembles suggest weaker carbon sink com-

pared to the prior. The magnitude of this sink is in

agreement with estimates of the contemporary net land

carbon uptake and it is lying in the range of

1.1 � 0.9 PgC yr�1 (period 1990–1999; Ciais et al.,

2013). The ensemble means presented here (prior and

constrained) are indeed contained within (the lower

half of) this range. Note, however, the different periods

considered and the different land area (our global esti-

mates are representative for only 80% of the land area
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due to methodological reasons explained in the method

section), which can also explain some differences. Fur-

thermore, it should also be noted that our constraint

approach does not induce any imbalance in the land

carbon budget as the same set of models is retained for

both the GPP and NBP estimates presented here, thus

preserving the internal land carbon balance. In this

sense, the lower NBP in the constrained estimates is a

direct consequence of the lower GPP.

Our analysis indicates that the expected decline in

the future land carbon sink (Friedlingstein et al., 2006;

Ciais et al., 2013) may in fact be higher than previously

thought, associated with a larger probability for the ter-

restrial biosphere turning into a net carbon source by

the end of the century. This decrease in the ability of

terrestrial ecosystems to absorb carbon in the con-

strained ensembles can be tracked back to the lower

increase in GPP simulated by the constrained models.

It is important to note that the estimates of the con-

strained fluxes might still be conservative, while the

uncertainties are only conditional to the processes actu-

ally represented in the models as many processes are in

fact missing in current ESMs. These may include: (i)

uncertainties in future vegetation cover (Arneth, 2015;

Campioli et al., 2015), (ii) cropland representation and

terrestrial ecosystem management practices including

soil fertility (Vicca et al., 2012), (iii) accelerated atmo-

spheric nitrogen deposition (Galloway et al., 2004), (iv)

competition processes (Arora & Boer, 2006), (v) hetero-

geneous shift in the geographical range of plants (Kelly

& Goulden, 2008), (vi) changes in the carbon assimila-

tion pathway (Gowik & Westhoff, 2011), (vii) changes

in carbon allocation to the different vegetation and soil

pools in response to climate change (Sevanto & Dick-

man, 2015), (viii) permafrost carbon feedbacks (Koven

et al., 2011, 2015) and (ix) plant–insect interactions

related to response of population size and phenology to

climate change (Scriber, 2011; Pe~nuelas et al., 2013).

Some of these processes (e.g., nitrogen deposition, land

cover changes) have determined the current net land

carbon fluxes (Ciais et al., 2013), and they also critically

have the potential to determine the future fate of the

land sink.

Outlook

Recent estimates suggest that we have already used

about 2/3 of our carbon quota for the 2 °C warming

target relative to preindustrial levels and at the moment

the anthropogenic carbon emissions track one of the

highest Representative Concentration Pathway

(RCP8.5) (Peters et al., 2012; Friedlingstein et al., 2014b;

Raupach et al., 2014; Le Qu�er�e et al., 2015). The identi-

fied decreased magnitude of the future land carbon

sink in the constrained ensembles implies that the

carbon emissions might need to be reduced more than

previously thought in order to keep global warming

below the 2 °C targets (Meinshausen et al., 2009; Zick-

feld et al., 2009).

We conclude that observation-based constraints

are a promising avenue to narrow down the spread

in future land carbon projections. This approach is

complementary (and not a surrogate) to model eval-

uation and improvement and is encouraged by the

apparent lack of reduction in climate projection

uncertainty despite decades of efforts to improve cli-

mate models. The constrained terrestrial carbon

fluxes might potentially help in constraining other

features of the carbon cycle (e.g., ocean carbon sink,

atmospheric CO2) and might offer a window in

reducing uncertainties in other features of future cli-

mate (e.g., air temperature). Therefore, our findings

have several important implications on the terrestrial

carbon balance, the fate of atmospheric CO2 concen-

trations and future climate change.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Conceptual diagrams of the different constraint approaches: (a) GPPcon, (b) ETcon and (c) GPP&ETcon. The likely range
for GPP and ET is defined based on 2std and 1std windows for the mean respectively.
Figure S2. Grid points where models simulate GPP within the likely range (2std) of the MTE GPP for the most productive month
over the period (1989–2005).
Figure S3. Emergent relationships between GPP and ET (1st column), DGPP and GPP (2nd column), DGPP and ET (3rd column)
and DGPP and DNBP (4th column) for every month individually.
Figure S4. Intermodel correlation between future changes in global annual GPP and NBP. The change is defined as the difference
between the period (2084–2100) and (1989–2005).
Figure S5. Percentage of land grid points where simulated GPP and ET are lying within the 2std range and the 1std range of the
MTE and the LandFlux-Eval products respectively.
Figure S6. Number of retained models for the most productive month for the GPPcon (top) and ETcon (bottom) constrained ensem-
bles
Figure S7. Prior and constrained change in future GPPmax (gC m�2 month�1) during the most productive month for the prior and
the constrained ensembles. The change is defined as the difference between 2084–2100 and 1989–2005.
Figure S8. Mean bias in precipiation between CMIP5 (Multi-model mean) and different reference precipitation datasets. The reuslts
are shown for the most productive month (1989–2005).
Figure S9. Percentage of grid points with estimates of both GPP and precipitation based on the CMIP5 models not lying within the
range of the reference products. Results are shown for the most productive month.
Table S1. List of the CMIP5 models used in this study.
Table S2. Prior and constrained estimates of global annual mean GPP and DGPP based on a monthly-based contraint. Numbers in
parenthesis correspond to the median.
Table S3. Prior and constrained estimates of global annual mean GPP and DGPP based on an annual-mean based contraint. Num-
bers in parenthesis correspond to the median.
Table S4. Precipitation datasets. All datasets were interpolated to a common regular 0.5° grid.
Appendix S1. Constraints on precipitation.
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