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Abstract

Background

Schistosomiasis is a snail-borne parasitic disease and is endemic in many tropical and sub-

tropical countries. Biomphalaria straminea, an intermediate host for Schistosoma mansoni,

is native to the southeastern part of South America and has established in other regions of

South America, Central America and southern China during the last decades. S. mansoni is

endemic in Africa, the Middle East, South America and the Caribbean. Knowledge of the

potential global distribution of this snail is essential for risk assessment, monitoring, disease

prevention and control.

Methods and findings

A comprehensive database of cross-continental occurrence for B. straminea was compiled

to construct ecological models. We used several approaches to investigate the distribution

of B. straminea, including direct comparison of climatic conditions, principal component

analysis and niche overlap analyses to detect niche shifts. We also investigated the impacts

of bioclimatic and human factors, and then used the bioclimatic and footprint layers to pre-

dict the potential distribution of B. straminea at global scale. We detected niche shifts

accompanying the invasions of B. straminea in the Americas and China. The introduced

populations had enlarged its habitats to subtropical regions where annual mean tempera-

ture is relatively low. Annual mean temperature, isothermality and temperature seasonality

were identified as most important climatic features for the occurrence of B. straminea. Addi-

tionally, human factors improved the model prediction (P<0.001). Our model showed that

under current climate conditions the snail should mostly be confined to the tropic and sub-

tropic regions, including South America, Central America, Sub-Saharan Africa and South-

east Asia.
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Conclusions

Our results confirmed that niche shifts took place in the invasions of B. straminea, in which

bioclimatic and human factors played an important role. Our model predicted the global dis-

tribution of B. straminea based on habitat suitability, which would help for prioritizing moni-

toring and management efforts for B. straminea control in the context of ongoing climate

change and human disturbances.

Author summary

Biomphalaria straminea is an intermediate host of Schistosoma mansoni. This snail has

not only established in peripheral countries but also survived in different water habitats in

Hong Kong and adjacent cities of mainland China. Ecological niche models were used to

predict the potential global distribution of B. straminea. Our results showed that there

were niche shifts in the process of invasion for B. straminea in the Americas and China.

This snail has expanded its habitats to subtropical regions with lower annual mean tem-

perature. Annual mean temperature, isothermality, temperature seasonality and human

influence were identified as most important climatic features for the occurrence of B. stra-
minea. Under current climate conditions the distribution of this snail should be mostly

confined to the tropic and subtropic regions, including South America, Central America,

Sub-Saharan Africa and Southeast Asia. With the rapid globalization and the continued

burden of imported cases of S. mansoni to non-endemic countries, predicting the poten-

tial distribution of the intermediate host and its drivers is increasing in importance for

designing control strategies and optimizing use of limited public health resources. Priori-

tizing surveillance and control efforts to high-traffic regions with high habitat suitability

may be the most effective approach.

Introduction

Invasive species can often pose threats to the ecosystem functioning and biodiversity at the

global scale, especially when they spread diseases[1]. There are a growing number of studies

conducted for risk assessment, monitoring and management of invasive species and reduction

of negative impacts. For many invasive species, however, once they are established over large

areas, their eradication or removal can be an impossible task[2]. The prevention of introduc-

tion and establishment is therefore thought to be the most cost-effective way of mitigating

future negative consequences[3, 4]. An important approach to prevention is predicting species

with invasive tendency and areas vulnerable to their invasion, which then can guide early

detection and rapid response efforts against invasive species[4–7].

B. straminea (Dunker, 1848) is a freshwater snail in the family Planorbidae, originated from

the southeastern part of South America[8]. It is a highly invasive and competitive species given

its capacity to survive during the periods of drought and its great fertility[8–10]. During the

last decades, free-ranging populations of B. straminea have been reported in peripheral coun-

tries including Paraguay[11], Argentina[12], Uruguay in 1987[13], Colombia in 1966[14] and

Costa Rica in 1976[15]. In the Caribbean area, its introduction has been documented in several

islands of the Lesser Antilles, namely Martinique around 1950[16], Grenada in 1970[17], Gua-

deloupe in 1985[18] and St Lucia in 1992[19]. Over the same period, the snail has invaded
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several new states in Brazil and replaced other Biomphalaria species following its introduction

[20]. In addition, B. straminea is noted for its long-distance dispersion and establishment in

Hong Kong in 1974, on the Pearl River Delta of China[21]. The snail subsequently dispersed

to different water habitats in adjacent cities in Guangdong Province of southern China, includ-

ing Shenzhen, Dongguan and Huizhou[22].

B. straminea is an intermediate host of Schistosoma mansoni[9, 23, 24], and is one of the

three species found to be naturally infected with S. mansoni in Brazil[8]. S. mansoni is a snail-

bone parasitic disease, prevalent predominantly in Africa, the Middle East, the Caribbean, Bra-

zil, Venezuela and Suriname[25]. China started several aid programs in African countries in

the 1970s. Since then, imported cases of S. mansoni from Africa have been increasing, which

has captured much attention from public health officials[25]. The existence of imported

patients and its intermediate host is the prerequisite of transmission of S. mansoni in China.

Moreover, the increasing amount of logistics and human flows induced by the Belt and Road

Initiative would put China at a greater risk of the disease[26]. Furthermore, global warming is

thought to change the current habitats of B. straminea, thereby affecting the original landscape

of schistosomiasis[25]. B. straminea was also found to precede the common snails as a carrier

of Angiostrongylus cantonensis, an important neurotropic pathogen of human angiostrongylia-

sis, under laboratory conditions.[27] The study of potential distribution and suitable habitats

of this snail are therefore of particular importance for global health.

Ecological niche modeling is increasingly used to predict the distributions of species and

vector-borne diseases[28–32]. This modeling method can not only predict distributional

ranges, but also identify what particular combination of environmental variables shapes a spe-

cies’ distribution[4, 29]. Previous studies have utilized ecological models to predict the spatial

distribution of B. straminea at state and national scales in Brazil[9, 24]. There is only one study

that built the prediction map in China based on the occurrence data in Shenzhen city[33].

However, species distribution models, which do not incorporate data from both the native and

introduced ranges, likely misrepresent the potential distribution of invasive species, especially

under projected climate change scenarios[34]. The aim of this study was threefold. First, we

compared the niches of the native and introduced populations to assess whether niche shifts

occurred in the invasion of B. straminea. Second, we investigated the impacts of bioclimatic

and human factors in the process of invasion. Third, we used pooled data from both the native

and introduced ranges to predict the potential distribution of B. straminea at a global scale.

Methods

Occurrence records

We obtained occurrence records from a comprehensive literature review (S1 Table), the

Global Biodiversity Information Facility database (GBIF, http://www.gbif.org/, last accessed

December 2016), and results from our own malacological surveys. All available location infor-

mation was extracted for each occurrence. We georeferenced records from literature and

GBIF that had only the administrative region using Google Maps (http://www.google.cn/

maps), Google Earth (https://www.google.com/earth/), or simple Google searches. We overlaid

the geolocated occurrence points with a raster layer that distinguished land from water. Any

records that were positioned outside the land area were subsequently removed from the

database.

Malacological surveys were conducted during the period from 2012 to 2016 in the river sys-

tems of cities (Guangzhou, Shenzhen, Dongguan and Huizhou) adjoining Hong Kong, in

which the first introduction of B. straminea in China was reported. Sampling was carried out

by two trained field investigators using standard snail scoops. At each site, the investigators
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collected any Biomphalaria snails found in a radius of approximately 2 m over a permitted

search time of 30min. The coordinates of each sampling sites were recorded with the help of a

handheld geographical positioning systems (GPS) device (Trimble Navigation Co., Ltd.). Col-

lected snails were appropriately labeled, transported to the laboratory and identified using the

morphological approach. Key characters were shape of the shells and number of the prostate

diverticula as previously described[8].

To minimize the effect of sampling bias, we retained only one occurrence point per 2.5 arc-

min resolution grid (a 5×5 km area)[30, 35, 36]. The final data set included 1312 occurrence

points (1262 from the native range, 19 from introduced ranges in the Americas and 31 from

China) (Fig 1).

Environmental variables

We obtained 19 bioclimatic variables with a spatial resolution of 2.5 arc-min from WorldClim

version 1.4[37]. The bioclimatic variables represent annual trends, seasonality and extreme

Fig 1. Geographical distribution of B. straminea occurrence records. In panels A, B and C, blue dots indicate occurrence records from the native range, red squares

are records from introduced ranges from the America and green triangles from China.

https://doi.org/10.1371/journal.pntd.0006548.g001
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environmental factors. They have been widely applied to model the ecological niche and

potential distribution of species[30, 35, 38, 39].

We also included the global human footprint layer version 2 (Wildlife Conservation Society

(WCS), & Center for International Earth Science Information Network (CIESIN)) in our

model to evaluate the correlation between anthropogenic influences and the distribution of

the introduced occurrences. The human footprint layer measures the human influence on

global surface, combining data sets representing human population density, land transforma-

tion, human access, and presence of infrastructures[38, 40]. We used the same resolution for

this layer as for the bioclimatic variables.

To reduce the effects of overparameterization and multicollinearity of predictors, we calcu-

lated the Pearson’s correlation coefficient for each pairwise comparison for all 19 bioclimatic

variables and the human footprint, and excluded variables with a high intercorrelation

(r> 0.90) (S1 Fig). The final environmental data set included 13 variables (S2 Table).

Comparisons of native and invaded ecological niches

We applied three different methods to test the differences in the variables of bioclimatic envi-

ronments at the occurrences between the native and introduced regions. First, we extracted

the values of predictors for each occurrence and used the Kruskal-Wallis test to compare the

pairwise differences in the distribution of each variable between the three distributional rec-

ords. P-values were Bonferroni-corrected to avoid false significant differences. Second, we

employed principal component analysis (PCA) to compare the position of occurrences from

the native and invaded ranges in the bioclimatic space[30, 41]. Third, we calculated the Scho-

ener’s index for niche overlap (D) for each pair of occurrences of B. straminea snails. D ranges

from 0 (no overlap) to 1 (identical). We then used niche equivalence and similarity tests that

rely on the metric D to detect niche shifts[42, 43]. We used a buffer of 500 km around each

known occurrence, which would provide better model predictions[44]. Computations of D,

niche similarity and equivalence were performed using the ENMTools package in R.

Ecological modeling and evaluation

Modeling was conducted using Maxent (3.3.3k, http://biodiversityinformatics.amnh.org/

open_source/maxent/), which is a widely used machine learning algorithm that estimates the

species’ probability distribution of maximum entropy, constrained by incomplete information

about the species’ distribution and the environmental factors[29]. Maxent generally has a bet-

ter performance for presence-only data sets and is particularly robust at small sample sizes in

comparison with other species distribution models[28, 45, 46].

To test the contribution of human impacts on the distribution of B. straminea, we built two

models for all occurrences using twelve bioclimatic layers with and without the human foot-

print layer. Default settings were used when not otherwise stated. Each model was replicated

ten times so that results were summarized as an average of the ten models. Occurrence data

were randomly split into a training subset (75%) and a test one (25%). Subsequently, model

averages were projected on a global scale under current climatic conditions. Prediction maps

were generated using the tmap package in R.

We used two metrics to evaluate the model prediction performances: the area under the

curve of the receiver operating characteristic (AUC) and the sample size corrected Akaike’s

Information Criterion (AICc). The AUC uses presence and absence records to assess model

predictive performance across a range of thresholds. The AUC ranges from 0 to 1, where a

score of 0.7–0.8 is thought to be an acceptable prediction, 0.8–0.9 is good and>0.9 is excellent

[28]. The AICc can outperform AUC as a model selection criteria, particularly when sample
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sizes are small[47]. A lower AICc value indicates better model fits. We then compared the

means of the AUC and AICc values using t-test to assess whether the human footprint could

increase the predictive ability significantly. We also evaluated the relative contribution of each

variable to the model.

Results

Comparisons of bioclimatic conditions between the native and introduced

occurrences

Fig 2 summarizes the pairwise comparisons of bioclimatic conditions for B. straminea. For the

native and introduced occurrences in the Americas, only annual mean temperature (bio1) was

lower in the introduced range than in the native range whereas differences of the other tem-

perature-related variables were not significant. The introduced range had higher annual pre-

cipitation (bio12), precipitation of driest period (bio14), precipitation of warmest quarter

(bio18) and human influence than the native range but lower precipitation seasonality (bio15).

Annual mean temperature (bio1) was lower in the introduced range in China than in the

native range with lower isothermality (bio3) and mean diurnal temperature range (bio2). The

introduced range in China had higher temperature seasonality (bio4) and higher temperatures

in the warmest period (bio5) and in the wettest quarter (bio8) than the native range. Anthro-

pogenic impacts on the environment were higher in the introduced region in China with

higher annual precipitation (bio12) and precipitations in all seasons except the coldest quarter

(bio13, bio14, bio18).

Annual mean temperature (bio1) and isothermality were lower in the introduced range in

China than in the introduced range in the Americas. The introduced range in China had

higher temperature seasonality (bio4) and higher temperatures in the warmest period (bio5)

and in the wettest quarter (bio8) than the introduced range in the Americas. The introduced

ranges in China and the Americas also differed in all the precipitation requirements (bio12-15,

bio18 and bio19), but seemed similar in human impacts on the environment.

Principal component analysis

Principal component analysis of the predictors revealed two significant axes of climatic varia-

tion, which explained 54.32% of the total variance. The first principal component (PCA1) was

closely related to both temperature and precipitation while the second one was mostly associ-

ated with precipitation (Fig 3, Table 1). The environmental space occupied by the introduced

population of B. straminea in the Americas (red triangles) largely overlapped with that of the

native occurrences (blue dots) (Fig 3). The niche shift of the introduced American population

(red triangles) occurred principally along axis 1, indicating different component weights

of each variable as the underlying gradient of niche differentiation. The pattern of the intro-

duced population in China was more obvious, as they (green squares) clustered together and

appeared isolated from both the native and nonnative American occurrences (Fig 3). Human

impacts appeared to be an important factor for the occurrences in China, as the China cluster

shifted roughly along the direction of human footprint variable (Fig 3).

Niche similarity tests

All occurrence pairs showed very limited levels of niche overlap (Schoener’s D between 0.03–

0.17), with the highest overlap found between the native range and the introduced range in the

Americas (Table 2). The null hypotheses of niche equivalency and similarity were rejected for

all occurrence pairs (P<0.05).
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Fig 2. Comparison of bioclimatic variables between native ranges of native occurrences (blue), introduced occurrences in the Americas (red) and

introduced occurrences in China (green). Asterisks (�) indicate significant pairwise Kruskal-Wallis test differences between the three ranges (ns: not

significant, �P< 0.05, ��P< 0.01, ���P< 0.001, ����P< 0.0001).

https://doi.org/10.1371/journal.pntd.0006548.g002
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Fig 3. Biplot showing the bioclimatic spaces for the three groups of occurrence records of B. straminea. The line

length indicates the importance of each variable on the two axes of the principal component analysis.

https://doi.org/10.1371/journal.pntd.0006548.g003

Table 1. Principal component weights of each bioclimatic variable assigned by the principal component analysis.

Variables Component 1 Component 2 Component 3 Component 4

bio1 0.79 0.49 0.05 -0.33

bio2 0.29 -0.55 0.45 0.32

bio3 0.77 0.10 -0.38 0.36

bio4 -0.69 -0.23 0.50 -0.32

bio5 0.75 0.18 0.40 -0.36

bio12 -0.37 0.78 0.34 0.31

bio13 0.02 0.63 0.57 0.49

bio14 -0.63 0.53 -0.32 -0.22

bio15 0.68 -0.21 0.48 0.31

bio18 -0.73 -0.03 0.57 0.08

bio19 0.01 0.84 -0.31 0.13

footprint -0.28 0.17 0.34 -0.08

Eigenvalue 4.25 2.81 2.33 1.34

Cumulative percentage of variance 32.7 54.32 72.21 82.5

https://doi.org/10.1371/journal.pntd.0006548.t001

Habitat suitability of an invasive snail, Biomphalaria straminea

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006548 May 29, 2018 8 / 16

https://doi.org/10.1371/journal.pntd.0006548.g003
https://doi.org/10.1371/journal.pntd.0006548.t001
https://doi.org/10.1371/journal.pntd.0006548


Ecological modeling and variable contributions

The ecological models performed reasonably well, with all AUC values >0.9. The predictive

capability was significantly higher for models with the human footprint layer (full model)

than those without (P < 0.001). The AICc of the full model was significantly lower than the

model with bioclimatic variables only (P < 0.001), indicating that the human footprint layer

improved the model performance significantly (Table 3). The prediction map of the full model

also showed less medium suitable areas (light blue) than the model without the human foot-

print layer (Fig 4). In China, the two models differed most in the southern regions, including

Guangxi and Guangdong Provinces. In addition to southern China, the most suitable regions

for the establishment of B. straminea were identified in the eastern regions of South America,

Central America, western and eastern regions of Africa and Southeast Asia (Fig 4).

The inclusion of the human footprint layer influenced the relative contributions and per-

mutation importance of the bioclimatic variables (Table 4). The human footprint, isothermal-

ity (bio3) and temperature seasonality (bio4) had higher relative contribution in predicting the

distribution of B. straminea. Annual mean temperature (bio1), isothermality (bio3) and the

human footprint were the most important judging by the metric of permutation importance.

Discussion

Considering the distribution of B. straminea in its native range and invaded peripheral regions

in the Americas, it has a broad geographical and climatic range (Figs 1, 2 and 3). Like other

invasive species, B. straminea snails have developed a variety of survival strategies to adapt to

variable environments[9]. Our study has demonstrated that the B. straminea occupies signifi-

cantly different ecological niches in the native region and invaded regions in the Americas and

China, providing empirical evidence of the ability of this type of invasive snails to repeatedly

acclimate to new environmental conditions. Such capability may be a fundamental basis for a

successful invasion of exotic species[30]. The shifts were significant for the two groups of

invaded occurrences in the Americas and China. Although for these two ranges, there were

lack of evidence for niche identity and similarity, the climatic niche shifted towards a similar

direction (Fig 2).

There are potential mechanisms for the observed niche shifts in our study, which include:

1) snail breeding conditions in the invaded range that are not accessible in the native range

due to geographical dispersal limitations; 2) a biotic release from native predators, competitors

and pathogens or diseases in the novel habitats; and 3) a rapid evolution accompanied the

Table 2. Analyses of niche overlap, equivalency and similarity of climatic niches based on the distributions of B. straminea.

Occurrence Pairs Schoener’s D P value (Equivalency test) P value (Similarity test)

Native-Nonnative America 0.17 0.01 0.02

Native-China 0.03 0.01 0.01

Nonnative America-China 0.04 0.01 0.01

America combined-China 0.03 0.01 0.01

https://doi.org/10.1371/journal.pntd.0006548.t002

Table 3. Model performances and results of t-tests. Data are shown as means (SD) of ten runs.

Metrics Without footprint layer With footprint layer P value

AUC 0.932 (0.004) 0.941 (0.004) <0.001

AICc 34981.960 (9.123) 32505.900 (0.206) <0.001

https://doi.org/10.1371/journal.pntd.0006548.t003
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Fig 4. Global potential distributions of B. straminea in America, Africa (A&B) and China (C&D). Panels A and C were outputs without the human footprint layer

while B and D were built with this layer. The scores indicate the environmental suitability.

https://doi.org/10.1371/journal.pntd.0006548.g004

Table 4. Relative contributions and permutation importance of bioclimatic variables and human footprint to the current predicted distribution of B. straminea.

Data are shown as means (SD) of ten runs (%).

Variables Relative contribution Permutation importance

Without footprint layer With footprint layer Without footprint layer With footprint layer

bio1 1.905 (0.484) 1.717 (0.287) 22.194 (2.962) 21.287 (2.590)

bio2 6.396 (0.434) 0.849 (0.229) 3.859 (0.362) 1.169 (0.221)

bio3 43.312 (1.334) 31.944 (2.052) 22.320 (2.008) 26.625 (3.474)

bio4 30.272 (1.367) 17.971 (1.635) 22.168 (1.451) 4.457 (0.696)

bio5 3.253 (0.255) 2.233 (0.413) 8.718 (0.483) 5.585 (0.709)

bio8 0.691 (0.114) 0.975 (0.738) 3.258 (0.770) 2.929 (1.205)

bio12 9.182 (0.532) 1.790 (0.618) 8.330 (0.390) 5.190 (0.430)

bio13 0.030 (0.006) 0.164 (0.211) 0.709 (0.118) 0.127 (0.041)

bio14 2.173 (0.242) 1.209 (0.177) 1.492 (0.158) 0.554 (0.126)

bio15 0.522 (0.110) 0.164 (0.194) 1.812 (0.197) 0.464 (0.070)

bio18 1.935 (0.145) 0.938 (0.110) 4.284 (0.157) 3.815 (0.387)

bio19 0.327 (0.130) 0.317 (0.223) 0.855 (0.151) 0.452 (0.120)

footprint - 39.729 (1.217) - 27.345 (1.153)

https://doi.org/10.1371/journal.pntd.0006548.t004
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invasion, which may allow them to colonize new environments[48–50]. Unfortunately, disen-

tangling the relative roles of these mechanisms is not possible based on our data. Further field

and experimental studies are required to clarify the mechanisms behind the climatic niche

shifts for B. straminea invasions.

Our results indicated that the annual mean temperature, isothermality and temperature

seasonality were the most important climatic features for the occurrence of B. straminea. The

snail can be found in a wide variety of shallow aquatic habitats with little water velocity, such

as small pools, lakes, streams, irrigation channels and flooded areas[8]. Fluctuations of water

temperature may have a direct effect on the growth of juvenile snails as well as the reproduc-

tion and survival of adults[8, 51]. They keep active at a temperature of 18–32 ˚C while the opti-

mum temperature for their development is 20–26 ˚C[51]. In some permanent habitats with

compatible temperature, B. straminea reproduces throughout the year; in others with short

window of suitable temperature, only a single generation is produced each year[51]. In addi-

tion, temperature is associated with the production and release of schistosome cercariae[8].

The climate of the native and the invaded Caribbean area and Colombia is tropical but the

other invaded regions, including Paraguay, Argentina, Uruguay, Hong Kong and coastal

mainland China, have a subtropical climate characterized by humid, hot summers and rela-

tively dry and mild winters. Evidently, B. straminea has expanded its domain to regions with

lower annual temperature partially facilitated by its ability to survive adverse environmental

conditions, e.g. lower or higher temperature and desiccation, in the mud[51]. Annual precipi-

tation also played a role in the occurring of B. straminea, which was consistent with a recent

survey that found a positive correlation between precipitation and B. straminea abundance

[52].

Inclusion of the human footprint layer enhanced the accuracy of the ecological niche

model, indicating that human activities can contribute to the spreading of introduced B. stra-
minea. Our finding supported the association between human-intervened environmental

changes and distribution of schistosomiasis and its intermediate hosts[53, 54]. The develop-

ment and management of water resources is thought to be an important risk factor for schisto-

somiasis transmission[55]. Human activities can affect the biological invasions by changing

the spreading routes of the species and creating suitable microclimates in regions with subopti-

mal climates[56]. Non-native species tend to colonize man-made suitable habitats first and

move on to natural environments[57]. The first introduction of B. straminea into Hong Kong

was thought to be associated with imported tropical aquarium plants or fish from South Amer-

ica[22, 58], which was reconfirmed by a recent phylogenetic analysis[59]. Subsequent coloniza-

tion occurred in large outdoor concrete breeding ponds for tropical aquarium fish near the

border with mainland China[60]. This snail was first found in several ponds, ditches and

rivers in Shenzhen of China, and spread further in the Shenzhen River system[58]. Shenzhen

was one of the fastest-growing cities in the world and has undergone magnificent landscape

reconstructions, which may lead to dispersion of the snails to surrounding cities[61]. A survey

conducted in 2012–2013 noted that this snail had established in several waterways in Dong-

guan and Huizhou[61]. Therefore, environmental assessment is advised for infrastructure

projects, especially water conservancy schemes, that might transport B. straminea to novel

habitats.

According to our model, B. straminea showed a variable range of suitable areas in the tropi-

cal and subtropical regions including continental and coastal areas and islands. The most suit-

able regions for invasion covered Central America, Sub-Saharan Africa and Southeast Asia

(Fig 4). B. straminea is present in several countries in Central America, but its role as the inter-

mediate host of S. mansoni has never been confirmed in these countries[11]. Africa is home to

other intermediate hosts of S. mansoni, including B. pfeifferi, B. alexandrina and B. sudanica
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[62]. Although this continent has no evidence so far for the presence of B. straminea snails, our

predicted suitable habitats largely overlap with the distribution of S. mansoni in Africa[63].

Once the B. straminea was introduced and successfully established in these regions, it might

complicate the life cycle of S. mansoni and increase the burden of schistosomiasis control for

African countries. Therefore, in African regions efforts should be mainly directed to monitor-

ing water bodies for early signs of an invasion by global trade and transport.

Identified suitable areas in China were constrained to tropical and subtropical regions.

However, the low suitability of some areas does not mean that B. straminea can be introduced

without any risk of invasion since these snails could breed in suitable artificial microhabitats.

Moreover, the ongoing global climate change, in particular global warming, can modify the

suitability and cause an expansion of suitable areas towards higher latitude[25]. The outbreak

of urogenital schistosomiasis in Corsica, France, sounded the alarm and suggested that the

transmission cycle of schistosomiasis can be completed upon the encounter between the inter-

mediate host snails and imported individuals infected the parasite[64]. Since the 1970s,

imported cases of S. mansoni or S. haematobium has been repeatedly reported among migrant

workers, who are at high risk of African schistosome infections because of frequent contact

with infested water. Few of the individuals infected with S. mansoni, usually characterized by

only mild or no symptoms, seek medical help and they may be misdiagnosed for the reason

that Chinese clinicians lack knowledge of the diagnosis of this disease. The priorities of China’s

health authorities are to monitor and block further spread of B. straminea as well as to develop

strategies to reduce the imported cases of S. mansoni from endemic areas.

In conclusion, our study showed that the environmental spaces of the introduced B. stra-
minea populations in the Americas and China shifted compared to that of their native coun-

terparts. This snail has acclimated to parts of the subtropics with lower annual mean

temperature. Incorporation of anthropogenic factors improved niche model prediction in

areas of high human disturbance. Our final model predicted large suitable areas in the tropics

and subtropics, indicating that B. straminea snail has a significant potential to spread further

as nonnative species. Therefore, it is important to impose strict monitoring and surveillance

of new invasion of B. straminea in areas at high risk.
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