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Species distribution models (SDMs) project the outcome of community assembly pro-
cesses – dispersal, the abiotic environment and biotic interactions – onto geographic 
space. Recent advances in SDMs account for these processes by simultaneously mod-
eling the species that comprise a community in a multivariate statistical framework 
or by incorporating residual spatial autocorrelation in SDMs. However, the effects of 
combining both multivariate and spatially-explicit model structures on the ecological 
inferences and the predictive abilities of a model are largely unknown. We used data 
on eastern hemlock Tsuga canadensis and five additional co-occurring overstory tree 
species in 35 569 forest stands across Michigan, USA to evaluate how the choice of 
model structure, including spatial and non-spatial forms of univariate and multivariate 
models, affects ecological inference about the processes that shape community compo-
sition as well as model predictive ability.

Incorporating residual spatial autocorrelation via spatial random effects did not 
improve out-of-sample prediction for the six tree species, although in-sample model 
fit was higher in the spatial models. Spatial models attributed less variation in occur-
rence probability to environmental covariates than the non-spatial models for all six 
tree species, and estimated higher (more positive) residual co-occurrence values for 
most species pairs. The non-spatial multivariate model was better suited for evalu-
ating habitat suitability and hypotheses about the processes that shape community 
composition. Environmental correlations and residual correlations among species pairs 
were positively related, perhaps indicating that residual correlations were due to shared 
responses to unmeasured environmental covariates. This work highlights the impor-
tance of choosing a non-spatial model formulation to address research questions about 
the species–environment relationship or residual co-occurrence patterns, and a spatial 
model formulation when within-sample prediction accuracy is the main goal.
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Introduction

Community composition in space is a function of both biotic 
and abiotic processes. A local community is a subset of spe-
cies that dispersed from a regional species pool (MacArthur 
and Wilson 1967), and was filtered by both environmental 
conditions and biotic interactions (Andrewartha and Birch 
1954, Rosenzweig and MacArthur 1963, MacArthur 1972). 
The assembly of communities emphasizes that dispersal, 
environmental filtering and biotic interactions are not inde-
pendent nor sequential processes, but rather affect commu-
nity assembly interactively (HilleRisLambers  et  al. 2012, 
Kraft et al. 2015, Cadotte and Tucker 2017). Species distri-
bution models (SDMs) are often used to model the spatial 
distributions of species and assemblages, and project the out-
come of these three processes onto geographic space (Guisan 
and Zimmermann 2000, Pulliam 2000).

Fundamentally, SDMs use regression models or machine 
learning to correlate abiotic conditions with occurrence or 
abundance of a single species to make predictions about 
responses to climatic change or to identify potential conserva-
tion areas solely based on the species–environment relation-
ship (Elith and Leathwick 2009, Araújo and Peterson 2012). 
Additionally, SDMs can simultaneously model the species 
that comprise a community by incorporating residual co-
occurrence patterns that reflect species interactions or residual 
responses to unmeasured abiotic conditions in a multivariate 
modeling framework (Ovaskainen et al. 2010, Kissling et al. 
2012, Pollock et al. 2014, Nieto-Lugilde et al. 2018). Models 
can also account for spatial autocorrelation in SDMs via spa-
tial random effects (Keitt et al. 2002, Latimer et al. 2006). 
Some modeling approaches combine both the multivariate 
and spatially-explicit approaches to unify environmental fil-
tering, species co-occurrence patterns and spatial processes 
into a common framework (Finley et al. 2009a, Latimer et al. 
2009, Thorson  et  al. 2015, 2016, Ovaskainen  et  al. 2016, 
Schliep  et  al. 2018). However, estimates of the regression 
coefficients that describe the species–environment relation-
ship may be affected by spatial confounding when covariates 
have spatial structure of their own and spatial random effects 
are added to the model (Hanks et al. 2015). Effects of com-
bining both multivariate and spatially-explicit model struc-
tures on the ecological inferences and the predictive abilities 
of a model are largely unknown.

We explicitly compare univariate, univariate–spatial, 
multivariate and multivariate–spatial models of tree species 
occurrence. We focus on eastern hemlock Tsuga canadensis 
and its associates across Michigan, USA. Eastern hemlock is 
a long-lived, foundational species of conservation concern 
because it is threatened across much of its native range by 
hemlock woolly adelgid Adelges tsugae, an invasive sap-feed-
ing insect (Orwig et al. 2012, Havill et al. 2014). Localized 
infestations of HWA were first detected in in Michigan in 
2015. Eastern hemlock does not occur in all locations with 
suitable habitat (Evans and Gregoire 2007, Doucette  et  al. 
2009, Fitzpatrick et al. 2012, Ferrari et al. 2014), suggesting 

interactions with other tree species may have strong effects 
on eastern hemlock occurrence. Indeed, accounting for co-
occurring species in the community is fundamentally impor-
tant for modeling distribution and abundance across a wide 
variety of tree species (Meier et al. 2010, Clark et al. 2014, 
Taylor-Rodríguez et al. 2017). Additionally, univariate mod-
els that incorporate residual spatial autocorrelation reduce 
false-positive occurrence predictions for eastern hemlock 
(Record et al. 2013). We focus on eastern hemlock and its 
common associates in part because accurate prediction of 
eastern hemlock occurrence is essential for hemlock woolly 
adelgid detection and eradication efforts.

With eastern hemlock and its associated species, we quan-
tify how the combination of both multivariate and spatially-
explicit elements in a statistical modeling framework affects 
resulting ecological inferences and predictive ability.

We also compare the magnitude of the improvements 
in prediction gained by incorporating residual dependence 
across species versus across space. Specifically, we ask: 1) how 
does the improvement in prediction gained from a spatially-
explicit model compare to that of a multi-species model? 2) 
How does the choice of model affect ecological inference 
about environmental filtering, niche overlap and residual co-
occurrence patterns?

We expect that the improvement in prediction gained 
by incorporating dependence among co-occurring species 
is likely small compared to the improvements gained by 
incorporating residual spatial autocorrelation, and that the 
spatial models will yield lower estimates of overall impor-
tance of environmental conditions in shaping distribu-
tion and abundance (Dormann et al. 2007, Ver Hoef et al. 
2018). We would expect negative residual co-occurrence pat-
terns between species that have similar environmental toler-
ances if competition is structuring these tree communities 
(Kohli et al. 2018), as trees are limited by space and one spe-
cies cannot increase unless other species decline (Clark et al. 
2014, Taylor-Rodríguez  et  al. 2017). However, residual 
co-occurrence patterns often result from shared responses 
to unmeasured environmental covariates (Dormann  et  al. 
2018, and references within). In this case we would expect 
positive residual co-occurrence values for species that respond 
similarly to environmental conditions and negative residual 
co-occurrence values for species that respond differently to 
environmental conditions (Kohli et al. 2018). The effect of 
incorporating residual spatial autocorrelation on residual co-
occurrence values is unknown.

Methods

Study system

Eastern hemlock occurs across a wide range of abiotic and 
soil conditions (Rogers 1978). It was originally thought to 
be a relic of glacial eras that persists only in cool moist pock-
ets (Clements 1934), but the current view holds that eastern 
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hemlocks have wide climatic tolerances similar to co-occur-
ring shade tolerant northern hardwoods (George et al. 1974). 
Hemlock is commonly associated with both deciduous and 
evergreen species in eastern forests, including sugar maple Acer 
saccharum, eastern white pine Pinus strobus, northern white-
cedar Thuja occidentalis and yellow birch Betula alleghanien-
sis (Frelich  et  al. 1993). We focused on these focal species 
in addition to eastern hemlock because they are prevalent, 
commonly associated with eastern hemlock in Michigan, 
and have not been widely planted in forested areas. We also 
included one common species – jack pine Pinus banksiana – 
that is not commonly associated with eastern hemlock.

Forest inventory data

We compiled data on the occurrence of tree species from 72 
689 forest stand inventories performed on state and national 
forest land in Michigan, USA. We obtained percent cover 
of each overstory species that comprised at least 2% of the 
canopy on state land from the State of Michigan GIS Open 
Data Portal (Michigan Dept of Natural Resources 2013) and 
percent cover of overstory tree species on National Forest land 
from USDA Forest Service (United States Dept of Agriculture 
2011). Data from each stand were spatially referenced as poly-
gons. We included stands that ranged in area from 0.1 ha to 
8.1 ha in the analyses (n = 35 569 stands). The maximum dis-
tance between pairs of stands was 649 km. Estimates of rela-
tive abundance (percent cover) were converted into presence/
absence for analysis (see Supplementary material Appendix 1 
Table A1 for the prevalence of each focal tree species).

Abiotic covariates

We obtained data on abiotic conditions in raster format 
for Michigan from online data repositories and prepared 
them for analysis using R ver. 3.4.4 (R Core Team), GDAL 
(GDAL Development Team 2017) and the ‘rgdal’ package 
(Bivand et al. 2018). Elevation data were obtained at 1-arc 
second (approx. 30 m) resolution from the NASA Shuttle 
Radar Topography Mission via USGS (NASA Jet Propulsion 
Laboratory 2013). Slope and aspect were calculated from the 
topography data for a 3 × 3 pixel kernel around each cen-
tral pixel. Available soil water storage (0–100 cm depth) was 
obtained at 10 m resolution from the gridded soil survey geo-
graphic (gSSURGO) database (Soil Survey Staff 2017).

We acquired 30-yr climate normals for monthly mean 
temperature and mean monthly precipitation at 800 m reso-
lution over the period 1981–2010 from the PRISM database 
(PRISM Climate Group 2017). These data layers were used 
to calculate bioclimatic variables commonly used in SDMs 
using the R package dismo (Hijmans et al. 2017). We chose 
covariates that were both biologically meaningful and not 
highly correlated with one another (max r = 0.50), including: 
minimum temperature (BIOCLIM 6); precipitation sum 
(BIOCLIM 19) during the coldest quarter of the year; maxi-
mum temperature (BIOCLIM 5); and precipitation sum 
(BIOCLIM 18) during the warmest quarter of the year.

We calculated two additional, biologically meaningful 
covariates – actual evapotranspiration and climatic water 
deficit – at 30 m resolution across Michigan. These variables 
describe how temperature and water interact to affect plants 
in a mechanistic way, and are often good predictors of tree 
distributions (Stephenson 1998, Lutz et al. 2010). Climatic 
water deficit describes the evaporative demand not met at a 
site – i.e. the additional amount of water that would have been 
transpired by vegetation had it been available (Thornthwaite 
1948, Stephenson 1998). The two covariates were calculated 
following Itter et al. (2017) using monthly mean temperature 
and precipitation (30-yr normals), slope, aspect, latitude and 
soil water storage. Actual evapotranspiration and minimum 
winter temperature were positively correlated (r = 0.62).

We also obtained raster data on land cover class derived 
from Landsat imagery from the National Land Cover 
Database (NLCD) at 30 m resolution (Homer et al. 2015). All 
gridded data layers were reprojected to match the resolution of 
the NLCD land cover class data (30 × 30 m) using the bilinear 
method. Values for cells that were not classified as forested 
according to the NLCD cover class database were removed 
from all covariate layers. Covariates for each stand were 
extracted as the mean value of the grid cells that comprised the 
polygon outlining each stand. The covariates displayed spatial 
structure (Supplementary material Appendix 1 Fig. A1) and 
were mean centered and standardized for analysis.

Statistical models

We compared four generalized linear logistic regression mod-
els, including univariate, spatially-explicit univariate, mul-
tivariate and spatially-explicit multivariate. These models 
estimated the probability of occurrence for each focal species 
in each stand using minimum winter temperature (MIN), 
maximum summer temperature (MAX), total precipitation 
in the coldest quarter of the year (WIP), total precipitation in 
the warmest quarter of the year (SUP), annual actual evapo-
transpiration (AET) and annual climatic water deficit (DEF) 
as fixed covariates. Spatially-varying intercepts were added 
using either a univariate or multivariate Gaussian Process. A 
linear model of coregionalization was used to estimate the 
cross-covariance within the multivariate model (Gelfand et al. 
2004, Banerjee  et  al. 2014). Due to computational limita-
tions, the occurrence data were randomly split and a dataset 
of n = 17 784 stands was used to fit the full models.

Inference was obtained in a Bayesian framework using 
uninformative priors. Regression coefficients, β, described 
the relationship between occurrence probability and each 
covariate specific to each tree species and were assigned 
unbounded uniform priors. In spatial models, spatial decay 
parameters, ϕ, were assigned a uniform prior with support 
across the extent of the study area. For the univariate spatial 
model, the variance parameter Σ2 was assigned an inverse-
Gamma prior with a shape of 2 and scale of 1. Similarly, the 
variance–covariance matrix parameter K in the multivariate 
models, with N = 6 species, was assigned an inverse-Wishart 
prior with N + 1 degrees of freedom and N × N diagonal scale 
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matrix with diagonal elements set to 0.1. Given the compu-
tational demand induced by the size of the training dataset, 
the Gaussian processes were replaced with their Gaussian 
predictive process approximations (Banerjee  et  al. 2008, 
Finley et al. 2009b).

First, univariate and univariate spatial models were fit 
separately for each of the six tree species for 50 000 MCMC 
iterations with a target acceptance rate of 0.42 using the R 
package spBayes (Finley  et  al. 2007, 2015). spBayes uses 
the logistic implementation of the multivariate model as 
described in Wilkinson et al. (2019, section 2.3.2). The first 
37 500 iterations were discarded as burn-in. Then, we ran a 
multivariate spatial model using the posterior mean param-
eter estimates from the univariate spatial models as initial val-
ues and wide proposal variances to keep the acceptance rate 
as close to 0.42 as possible. The multivariate spatial model 
was run for 5000 iterations, and the first 2500 were discarded 
as burn-in. The non-spatial multivariate model was fit using 
the open-source JAGS software (Plummer 2003) within R 
following the hierarchical, latent-variable probit formulation 
using code published in Pollock et al. (2014, Supplementary 
material Appendix 1). This model formulation is described in 
Wilkinson et al. (2019, section 2.3.3). The model was run for 
50 000 iterations and the first 37 500 were discarded as burn-
in. The residual variance–covariance matrix for each multi-
variate model was rescaled to create a correlation matrix.

Model evaluation

We performed out-of sample prediction using blocked cross-
validation (Roberts et al. 2017) for each of the models. We split 
the 17 784 stands according to the five large hydrologic units 
(watersheds) that comprised the data (Fig. 1). The watershed 
boundary dataset (United States Geological Survey 2017) 
was developed as a coordinated effort between the United 
States Dept of Agriculture-Natural Resources Conservation 
Service (USDA-NRCS), the United States Geological Survey 
(USGS) and the Environmental Protection Agency (EPA). 
Spatial autocorrelation of each environmental covariate 
was evaluated with correlograms using the R package ‘ncf ’ 
(Bjornstad 2019), and positive spatial correlation extended to 
150 km or less for all covariates. Blocking by large watershed 
for out-of-sample prediction minimized dependence between 
the training and test datasets. We performed cross validation 
by sequentially withholding data from each watershed, fit-
ting the model and predicting to the holdout watershed. We 
also evaluated in-sample model fit using the 17 785 stands 
randomly withheld from the full dataset. We calculated the 
area under the curve (AUC), a commonly-used model per-
formance statistic (Fielding and Bell 1997). Potential val-
ues of the AUC are between 0 and 1, where 0.5 is no better  
than random.

We calculated the portion of the total variation in occur-
rence probability attributable to abiotic covariates for each 
species as the sum of the products of the squared regres-
sion coefficients for that species (which represents the vari-
ance due to environmental covariates because the abiotic 

covariates are standardized to unit variance) divided by the 
total variance of that species, which is the variance due to 
environmental covariates plus residual variance (Sæther et al. 
2000, Mutshinda et al. 2011). The component of between-
species correlation due to shared responses to environmental 
conditions was calculated for each species-pair as a function 
of the products of the regression coefficients and covariances 
of the environmental covariates obtained from the multivari-
ate model following Pollock et al. (2014). We evaluated the 
absolute shifts in pairwise residual co-occurrence as the poste-
rior mean estimate from the multivariate spatial residual cor-
relation matrix minus the posterior mean estimate from the 
multivariate residual correlation matrix for each species-pair.

Results

Incorporating residual spatial autocorrelation did not con-
sistently improve out-of-sample prediction accuracy, as mea-
sured by AUC, but did improve model fit (Fig. 2). However, 
incorporating residual dependence among co-occurring 
species did not affect model fit or out-of-sample prediction 
(Fig. 2). Areas with the highest predicted occurrence proba-
bility also had the greatest uncertainty associated with predic-
tion (shown for eastern hemlock in Fig. 3). Modeled spatial 
random effects, predicted occurrence probability and predic-
tion uncertainty for the remaining focal species are shown in 
Supplementary material Appendix 1 Fig. A2–A6.

The spatial models attributed less variation to environ-
mental conditions than the non-spatial models (Fig. 4). We 
used the non-spatial multivariate model to compare pos-
terior estimates of the β coefficients that describe the spe-
cies–environment relationship across species. Responses to 

Figure  1. Climatic water deficit (mm yr−1) in Michigan, USA. 
Colored polygons indicate the five large watersheds used for blocked 
cross-validation.
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abiotic covariates were species-specific (Fig. 5). Yellow birch 
and northern white cedar occurrence probabilities were most 
strongly explained by the included environmental covariates. 
Occurrence probability for yellow birch had the largest pro-
portion of variation attributed to environmental covariates 
(0.76), and was related to every covariate except winter pre-
cipitation. Relationships with minimum winter temperature 

and summer precipitation were positive, indicating that 
warmer winters and wetter summers were associated with a 
higher probability of occurrence. Relationships with summer 
temperature, actual transpiration and climatic water deficit 
were negative, indicating that yellow birch is particularly 
sensitive to warm summers and drought conditions. For 
northern white cedar, 73% of the variation in occurrence 

Figure 2. Comparison of predictive accuracy, as indicated by area under the curve (AUC), for six overstory tree species in Michigan, USA 
according to four different model specifications. The horizontal dashed line indicates the minimum AUC required for a useful model (0.7). 
Tree species codes are given according to the United States Dept of Agriculture standard codes: ACSA3 – Acer saccharum; BEAL2 – Betula 
alleghaniensis; PIBA2 – Pinus banksiana; PIST – Pinus strobus; THOC2 – Thuja occidentalis; TSCA – Tsuga canadensis.

Figure 3. Interpolated occurrence data (A), spatial random effect estimates (B), predicted occurrence probability (C) and prediction uncer-
tainty (D) for eastern hemlock Tsuga canadensis. Fitted values and spatial random effects made with a spatially-explicit univariate model 
with dimension reduction to 300 knots.
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probability was explained by environmental covariates. 
Occurrence probability of northern white cedar was posi-
tively related to winter temperature and actual transpiration, 
but negatively related to summer temperature and precipita-
tion, and climatic water deficit.

Sugar maple and white pine occurrence probabilities were 
partly explained by summer environmental covariates. For 
sugar maple, 50% of the variation in occurrence probabil-
ity was explained by environmental covariates. Sugar maple 
occurrence probability was positively related to winter tem-
perature and summer precipitation, but negatively related to 
actual evapotranspiration and climatic water deficit. Eastern 
white pine occurrence probability also had a relatively large 
proportion of variation attributed to environmental covari-
ates (0.48), and was related to every covariate except actual 
evapotranspiration. Occurrence probability was positively 
related to summer temperature, climatic water deficit and 
winter temperature and precipitation, but negatively related 
to summer precipitation.

Less of the variation in occurrence probability for either 
jack pine and eastern hemlock was explained by the included 
environmental covariates. For jack pine, 40% of the varia-
tion in occurrence probability was explained by environmen-
tal covariates. There was a strong positive relationship with 
winter precipitation and climatic water deficit, along with a 
strong negative relationship with minimum winter tempera-
ture. For eastern hemlock, 32% of the variation in occur-
rence probability was explained by environmental covariates. 
Eastern hemlock occurrence probability was positively related 
to winter temperature and summer precipitation, but nega-
tively related to summer temperature, actual evapotranspira-
tion and climatic water deficit.

Because the responses to each of the six environmental 
covariates were highly variable across species, quantifying 
pairwise shared responses to the covariates we included (i.e. 
the environmental correlations) was helpful for interpreting 
the overlap in response to environmental conditions among 
species. Shared responses to environmental conditions ranged 
from strongly positive to strongly negative and were positively 
related to residual correlation (Fig. 6). For example, eastern 

hemlock showed both positive environmental correlation 
and positive residual correlation with yellow birch, northern 
white cedar and sugar maple, whereas both environmental 
and residual correlations between eastern hemlock and jack 
pine were negative. However, eastern hemlock showed nega-
tive environmental but positive residual correlation with 
white pine. Changes in the magnitude of posterior residual 
co-occurrence estimates occurred in the multivariate versus 
multivariate spatial models (Fig. 7). Posterior mean estimates 
of residual correlation were higher in the multivariate spatial 
model in all but two instances.

Discussion

Incorporating residual spatial autocorrelation via spatial 
random effects did not improve out-of-sample prediction 
accuracy. Although superior performance of a spatial model 
compared with a non-spatial model has been observed in 
other studies (Record et al. 2013, Roberts et al. 2017), pre-
diction accuracy may be optimistically high when blocked 
cross-validation methods are not used (Roberts et al. 2017). 
In this study, model fit was higher in the spatial models. 
When spatial prediction or spatial smoothing is the primary 
aim, and model over-fitting is less of a concern, spatial ran-
dom effects models are a logical choice (Ver Hoef et al. 2018). 
For example, resources for surveying for the invasive hemlock 
woolly adelgid that attacks and kills eastern hemlocks are 
limited, and stakeholders are interested in accurately predict-
ing hemlock occurrence probability at unobserved locations 
within the matrix of observed locations to help decide where 
to allocate detection efforts.

The multivariate spatial model attributed substantially 
less variation in occurrence probability to environmental 
covariates for all six tree species than the non-spatial multi-
variate model. This was consistent with our expectation that 
the spatial models in general give lower estimates of overall 
importance of environmental conditions in shaping distribu-
tion and abundance (Dormann et al. 2007). Some authors 
have argued that adding spatial random effects to account 
for spatially autocorrelated residuals is essential for interpret-
ing the species–environment relationship (Keitt et al. 2002, 
Latimer et al. 2006). Alternatively, Bini et al. (2009) showed 
that coefficient shifts in spatial versus non-spatial models 
are idiosyncratic, and therefore ecological interpretation of 
beta coefficients should be performed cautiously for both 
spatial and non-spatial models. Residual spatial autocorrela-
tion may not induce bias in coefficient estimates, although 
it does affect the standard errors of the coefficient estimates 
(Diniz-Filho et al. 2003). Spatial confounding, however, can 
affect coefficient estimates when covariates have strong spatial 
structure of their own (Reich et al. 2006, Hanks et al. 2015). 
Methods for handling spatial confounding in spatial regres-
sion are continuing to develop, but currently non-spatial 
models are preferred when interpreting regression coefficients 
(Reich  et  al. 2006, Hodges and Reich 2010). Therefore, 
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Figure  4. Proportion of variation attributed to environmental 
covariates in the multivariate and multivariate spatial models of tree 
species occurrence probability. Tree species codes are given accord-
ing to the United States Dept of Agriculture standard codes: ACSA3 
– Acer saccharum; BEAL2 – Betula alleghaniensis; PIBA2 – Pinus 
banksiana; PIST – Pinus strobus; THOC2 – Thuja occidentalis; 
TSCA – Tsuga canadensis.
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we used the non-spatial multivariate model for evaluating 
hypotheses about the species–environment relationship and 
the processes that shape community composition.

The posterior estimates of the parameters in the non-spatial 
multivariate model – the β coefficients that describe the species–
environment relationship and the environmental correlations 
among species – were consistent with published descriptions 
of the range and natural history of each species (Burns and 
Honkala 1990) and with Michigan forest community types 
(Burger and Kotar 2003). Eastern hemlock, sugar maple and 
yellow birch had similar β species–environment relationships. 
The direction of the relationship between occurrence prob-
ability and each environmental covariate was the same across 
species, and the magnitude of the effect was often similar. This 
group of species was more likely to occur where winters were 
comparatively warm, summers were comparatively cool and 
moist, and both actual transpiration and climatic water deficit 
were low. This supports the hypothesis that eastern hemlock 
has broad physiological tolerances similar to co-occurring late-
successional overstory species (Rogers 1978), as opposed to the 
relict hypothesis (Clements 1934), and that abiotic processes 
have a large role in structuring these communities at the stand 
scale. Hemlock-maple-yellow birch associations are common 
in upland deciduous forests Michigan (Burger and Kotar 
2003). All three species are described as occurring in cool, 
moist areas and none of the distributions of these three spe-
cies extend above the 50° North parallel (Burns and Honkala 
1990). The northernmost points in the study area approach 
the northern distributional limits of these species.

(A)

(B)

(C)

Figure 6. Interspecific correlations due to shared responses to envi-
ronmental covariates (A) and residual dependence (B) for six over-
story tree species in Michigan, USA. Environmental and residual 
correlations tended to be positively related (C). In A and B, poste-
rior parameter estimates that were not significantly different than 
zero according to the 95% credible interval are not shaded. In (C), 
bars represent 95% posterior credible intervals. Tree species codes 
are given according to the United States Dept of Agriculture stan-
dard codes: ACSA3 – Acer saccharum; BEAL2 – Betula alleghanien-
sis; PIBA2 – Pinus banksiana; PIST – Pinus strobus; THOC2 – Thuja 
occidentalis; TSCA – Tsuga canadensis.
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Figure 7. Magnitude of shifts in residual co-occurrence parameters 
for multivariate versus multivariate spatial models. Positive values 
(blue tones) indicate residual pairwise co-occurrence was higher in 
the multivariate spatial model. Tree species codes are given accord-
ing to the United States Dept of Agriculture standard codes: ACSA3 
– Acer saccharum; BEAL2 – Betula alleghaniensis; PIBA2 – Pinus 
banksiana; PIST – Pinus strobus; THOC2 – Thuja occidentalis; 
TSCA – Tsuga canadensis.
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The two Pinus species, jack pine and white pine, shared 
unique responses to several environmental conditions. No 
other species showed a positive relationship between occur-
rence probability and summer temperature, winter precipita-
tion or climatic water deficit. Both Pinus species are drought 
tolerant (Burns and Honkala 1990). Indeed, estimates of the 
effect of climatic water deficit coefficients closely matched the 
published drought sensitivity classifications for all of the six 
species included in the study. According to Gustafson and 
Sturtevant (2013), jack pine and white pine are drought tol-
erant, sugar maple is somewhat drought tolerant and eastern 
hemlock, northern white cedar and yellow birch are some-
what intolerant. This matches the relative drought sensitivi-
ties estimated by the multivariate model shown in Fig. 5 and 
the relative drought sensitivities estimated by the multivariate 
spatial model.

Two species, jack pine and northern white cedar, each 
had one β estimate that was of different direction and mag-
nitude than other species. These unique differences matched 
the natural history description of each species. Jack pine was 
the only species that showed a negative relationship between 
occurrence probability and winter temperature (i.e. had 
higher occurrence probability in places with cold winters). 
The native range of jack pine extends above the 65° North 
parallel, which is further north than those of the other focal 
species (Burns and Honkala 1990). Jack pine was at the lower 
edge of its range limits in this study. Selective management 
for species of higher economic value than jack pine on more 
productive sites in Michigan, along with management actions 
promoting young, dense jack pine stands for Kirtland’s war-
bler Setophaga kirtlandii nesting habitat, could also contrib-
ute to this pattern. Northern white cedar is sensitive to snow 
and ice damage (Burns and Honkala 1990), and was the 
only species with a significant negative relationship between 
occurrence probability and winter precipitation, which typi-
cally falls as snow in the study area (Fig. 5).

Environmental and residual correlations among species-
pairs were positively related and typically had the same sign 
(Fig. 6), indicating that residual correlations likely resulted 
from shared responses to unmeasured environmental covari-
ates (Kohli et al. 2018). We incorporated meaningful, phys-
iology-based covariates derived from soil, topograpy and 
climate characteristics for each stand. Climatic water deficit 
encompasses much about the water holding capacity of the 
soil (r = −0.91) and soil organic carbon (−0.80). These soil 
characteristics, and soil water holding capacity in particular, 
can improve models of plant distributions (Cianfrani  et  al. 
2019). Still, unmeasured covariates such as geophysical char-
acteristics or management history could generate the posi-
tive residual co-occurrence patterns among eastern hemlock, 
sugar maple and yellow birch. We are unaware of positive 
biotic feedbacks between these species at any life stage that 
could explain the positive residual co-occurrence.

Higher estimates of pairwise residual co-occurrences in 
the multivariate spatial model versus the non-spatial multi-
variate model could reflect the positive spatial autocorrelation 
that was observed in the measured covariates (and perhaps 

unmeasured environmental covariates). The residual co-
occurrence matrix, similar to β coefficients, may be affected 
by a type of spatial confounding. It is important to demon-
strate the effect of choosing a spatially-explicit model struc-
ture on estimates of community co-occurrence structure. 
Given that spatially-autocorrelated covariates are an unavoid-
able part of ecological studies, future work should explore 
whether these shifts are consistently positive across systems 
and whether these shifts can be predicted according to spatial 
characteristics of the environment or other variables.

In conclusion, we found that incorporating residual 
spatial autocorrelation via spatial random effects did not 
improve out-of-sample prediction but did improve model fit. 
Spatial random effects models were appropriate when spatial 
smoothing within the dependence structure is the primary 
aim. However, the spatial models attributed substantially less 
variation in occurrence probability to environmental covari-
ates than the non-spatial models for all six tree species, and 
estimated higher residual co-occurrence values for most spe-
cies pairs. The non-spatial multivariate model was better 
suited for evaluating hypotheses about environmental filter-
ing, niche overlap and residual co-occurrence patterns. Other 
approaches for incorporating co-occurrence structure and 
missing covariates into SDMs, including latent factor anal-
ysis and spatial factor analysis (Thorson  et  al. 2015, 2016, 
Ovaskainen et al. 2016), are an area of active research that 
present alternatives to the methods used here, and evaluating 
abundance rather than binary occurrence could yield differ-
ent conclusions (Van Couwenberghe et al. 2013). This work 
highlights the difference between ecological and statistical 
model selection, and the importance of choosing an appro-
priate model formulation for a specific research question.
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