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BACKGROUND: Responding effectively to cli-
mate change requires urgent action to halt
net greenhouse gas (GHG) emissions and to
adapt to changes that cannot be prevented.
The Paris Agreement of the United Nations
Framework Convention on Climate Change
has committed governments to the following:
keeping global temperature rise below 2°C,
pursuing efforts to limit it to 1.5°C, and adapt-
ing to reduce the vulnerability of people and
ecosystems to the damaging consequences of
a changing climate.
When protected, restored, or managed ap-

propriately, natural and seminatural ecosys-
tems make critical contributions to climate
changemitigation and to helping people adapt
to climate change. Ecosystems themselves are
vulnerable to climate change, but by restoring
natural ecosystemprocesses, resilience can be
built, and awide range of adaptation strategies
can ameliorate the impacts.

Both synergies and conflicts between differ-
ent objectives can arise, and it is essential to
have clarity about what constitutes success
across the range of adaptation and mitigation
outcomes and to track progress. The success of
ecosystem-based mitigation can be measured
in terms of falling net emissions and stabiliza-
tion of atmospheric CO2 concentration. Al-
though this is conceptually straightforward,
it can be difficult to measure ecosystem fluxes
accurately. Adaptation is more complicated
because it encompasses a wide range of
objectives, with respect to people and bio-
diversity, including both reducing vulnera-
bility and managing unavoidable change.

ADVANCES: Many studies have investigated
how nature-based solutions can contribute to
climate change mitigation and adaptation.
The evidence is now clear that protecting and
restoring ecosystems is essential to holding

global temperature rise to between 1.5° and
2°C. The value of different interventions for
reducing GHG emissions and promoting car-
bon sequestration can be quantifiedwith vary-
ing degrees of confidence. The evidence for the
effectiveness, opportunities, and limitations of

ecosystem-based adapta-
tion in enabling people to
copewith climate change
is also growing, and these
approaches are starting to
be implemented. Adapta-
tion to reduce the vulner-

ability of biodiversity andecosystems themselves
to climate changehas beendiscussed overmany
years but proposed measures remain largely
untested. This is starting to change, with re-
cent studies gathering empirical evidence of
the factors that influence the vulnerability
of ecosystems and biodiversity. Nevertheless,
evaluation and reporting of adaptation is cur-
rently focused on planning and implemen-
tation of actions rather than on assessment
of whether these programs have successfully
reduced vulnerability.

OUTLOOK: A picture is emerging of what suc-
cessful adaptation andmitigation in terrestrial
ecosystems looks like when it is built around
protecting and restoring natural ecosystem
processes. To realize the potential of ecosys-
tems to ameliorate climate change requires
integrated actions that are consistent with
wider biodiversity and sustainable develop-
ment goals. High-carbon ecosystems, particu-
larly forests and peatlands, are essential, but
other ecosystems, such as savannas, are also
important elements of wider nature-based
solutions and should be protected and re-
stored. Pursuing mitigation objectives alone
risks perverse outcomes that increase rather
than reduce vulnerability. Further work is
required to test the effectiveness of specific
ecosystem-based mitigation and adaptation
measures and what works best to support
biodiversity in a changing climate. More-
robust monitoring and evaluation are needed
to drive progress. Measuring adaptation for
biodiversity is particularly challenging, and
monitoring and management will need to de-
velop together as we learn from experience.▪
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The role of natural and seminatural ecosystems in adaptation to and mitigation of climate
change. The flow diagram shows the relationships between adaptation for biodiversity, ecosystem-based
adaptation for people, and ecosystem-based mitigation. Negative impacts of climate change are
shown in dark gray, and positive responses are shown in green. Successful ecosystem response to
climate change depends on an integrated approach to ensure that synergistic effects are maximized
and harms are avoided.
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Natural and seminatural ecosystems must be at the forefront of efforts to mitigate and adapt to climate
change. In the urgency of current circumstances, ecosystem restoration represents a range of available,
efficient, and effective solutions to cut net greenhouse gas emissions and adapt to climate change.
Although mitigation success can be measured by monitoring changing fluxes of greenhouse gases,
adaptation is more complicated to measure, and reductions in a wide range of risks for biodiversity and
people must be evaluated. Progress has been made in the monitoring and evaluation of adaptation
and mitigation measures, but more emphasis on testing the effectiveness of proposed strategies is
necessary. It is essential to take an integrated view of mitigation, adaptation, biodiversity, and the
needs of people, to realize potential synergies and avoid conflict between different objectives.

E
cosystems are an essential element of
climate change mitigation and adap-
tation, with the potential to reduce both
net greenhouse gas (GHG) emissions and
vulnerability to climate change. Approx-

imately a quarter of postindustrial GHG emis-
sions have come from the degradation of
ecosystems (1), and the need for climate change
mitigation based on restoring ecosystems or
more sustainable land management is increas-
ingly recognized (2). Over the past 10 years,
carbon uptake by terrestrial ecosystems has
been ~3.2 metric gigatons of carbon per year
(GtC y−1)—equivalent to one-third of emis-
sions from fossil fuel burning (9.4 GtC y−1)
(3). However, land-use change simultaneously
caused emissions of 1.5 GtC y−1. Reversing
this flux is an essential element of climate
change mitigation. There is also increasing
evidence that adaption responses that use
ecosystems can reduce the risks of climate
change–associated events to people (4), such
as flooding or heat waves. Ecosystems are
themselves vulnerable to climate change, but
an increasing number of studies are showing
that this vulnerability can be reduced when
they are protected, restored, or managed for
adaptation.
Ecosystem-based, or nature-based, solutions

are distinctive in that they provide mitigation

and adaptation benefits at the same time as
benefitting biodiversity and human health
andwell-being (5). Furthermore, they have the
potential to deliver adaptation and mitigation
in a synergistic way. However, there is also the
potential for conflicts between different objec-
tives. A clear understanding of what success
looks like (6) for both adaptation and mitiga-
tion alongside broader biodiversity andhuman
factors is needed.
Monitoring and evaluation of actions aimed

at adapting to and mitigating climate change
is essential to driving progress and developing
techniques (6). Progress withmitigation can be
measured in terms of changes in GHG fluxes.
However, adaptation is more conceptually
challenging (7, 8). First, because it may not be
possible to fully assess the effectiveness of an
adaptation strategy in preventing adverse
impacts until decades later. Second, because
no single metric or even a small range of
metricswill adequately sumupprogress across
the many and varied aspects of adaptation.
Third, because there are risks that reducing
vulnerability in one sector may increase vul-
nerability in another. Finally, objectives may
need to change over time, because what con-
stitutes good adaptation at a global temper-
ature rise of 1.5° to 2°C does not necessarily
constitute good adaptation at 3° to 4°C. It is
also possible that there may not be agree-
ment among different actors about the goals
of adaptation.

What constitutes success in climate change
adaptation and mitigation in ecosystems?

In simple terms, success in mitigation means
preventing emissions and increasing carbon
sequestration. Historically, the main source
of GHG emissions from terrestrial ecosystems
has been deforestation (9), but emissions from

degraded peatlands,melting permafrost, more
frequent or more intense wildfires, and other
sources are compounding the problem (10).
Natural and seminatural ecosystems are im-
portant elements of mitigation strategies be-
cause of their capacity to remove CO2 from the
atmosphere, which could partially offset emis-
sions in sectors that are hard to decarbonize,
such as aviation (11, 12). Measures that have
the greatest potential to deliver climate change
mitigation in terrestrial ecosystems include
protection of intact carbon stores, avoided
deforestation, reforestation of formerly for-
ested land, and restoration of degraded peat-
lands. (Other habitats, including coastal and
marine systems, also store carbon but fall out-
side the scope of this Review.)
There is good evidence that reforestation of

formerly forested land can create a large car-
bon sink in its early decades and, in the longer
term, store considerable amounts of carbon.
From 2001 to 2010, for the moist tropics and
boreal Siberia, Pugh et al. (13) estimated a
carbon sink of 1.30 GtC y−1 in forest stands re-
growing after past disturbance and 0.85GtC y−1

in intact old-growth forest. Likewise, allowing
natural regeneration of forest on 350 Mha of
formerly forested land in the tropics and sub-
tropics has been estimated to store 42 GtC y−1

by 2100 (14). Restoring degraded peatlands can
substantially reduce (15) the large GHG emis-
sions resulting from draining, burning, and
cultivation (16). Climate change will have an
increasingly negative impact on the capac-
ity of many natural ecosystems to sequester
or store carbon. There is also an increasing
risk of exceeding tipping points that cannot
easily be reversed, such as catastrophic per-
mafrost melt (17). Rapid GHG emission re-
duction in all sectors is a priority to reduce
such risks.
What constitutes success in adaptation has

been widely discussed over the past two dec-
ades (6, 18). For biodiversity conservation,
adaptation includes a wide range of actions
at different scales, from individual species to
habitats and ecosystems (19, 20). The evidence
for these actions’ effectiveness in supporting
biodiversity conservation in a changing climate
has grown rapidly in recent years. Nevertheless,
many approaches have been based on theory,
modeling, and observations comparing differ-
ent locations or changes in time; relatively few
studies have assessed the effectiveness of
these measures experimentally (21). Three
broad approaches to adaptation for biodiver-
sity conservation can be identified: ecological
restoration, direct intervention to reduce vul-
nerability of species and habitats, and adjust-
ing conservation management and objectives.
Ecological restoration is important because

the impacts of climate change are often exac-
erbated in degraded ecosystems. Restoration
in this sense is focused on restoring natural
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processes, including catchment hydrology
(22, 23) and fire regimes (24, 25). “Renovation”
has been proposed as an alternate term (20),
to distinguish this process from seeking to
restore a former state, which may no longer
be possible with climate change. Increasing
habitat patch size can support more-resilient
populations (26), and increasing habitat con-
nectivity (27) enables some species to track
changing climatic conditions in fragmented
landscapes. Direct interventions range from
targeted management of vulnerable species
(28) and species translocation (29, 30) to
manipulating habitats, e.g., by shading water-
courses with trees to reduce water tempera-
tures (31, 32). Adjusting conservation objectives
and ways of working is becoming increasingly
necessary as climate change impacts increase;
for example, changing species distributions
may mean that species will need protection in
places they did not formerly inhabit (33, 34).
The longer that warming continues, the more
that adaptation for biodiversity will need to
shift toward managing change (20, 35, 36)
rather than building resilience. However, re-
cent research has demonstrated the existence
of refugia (37, 38) in which species survival
is more likely because of microclimatic con-
ditions, for example, on north-facing slopes
and other locally cool spots in a landscape.
Identifying and protecting these areas is
therefore a good strategy for promoting spe-
cies survival and is consistent with protecting
and restoring large heterogeneous areas.
Ecosystem-based adaptation (EbA) is the

use of biodiversity and ecosystem services
to help people adapt to climate change. EbA
includes natural floodmanagement, in which
peak flows are reduced and flood storage ca-
pacity is increased by restoring wetlands and
natural features of rivers, such as meanders
and woody debris; creation of green space and
planting of trees to provide local cooling for
people or livestock; and establishment of veg-
etation on slopes prone to landslip during
extreme rainfall events. The evidence base for
EbA has developed rapidly, with many studies
demonstrating that the approach can be more

cost-effective in the delivery of adaptation
outcomes, and that it provides multiple co-
benefits and represents a more sustainable
approach than engineered adaptation mea-
sures (39). However, the adoption of EbA
approaches is patchy (40) and the involve-
ment and empowerment of local communities
and stakeholders is essential for successful
EbA (41, 42).
The particular value of nature-based solu-

tions in addressing climate change is their
capacity to simultaneously provide mitiga-
tion and adaptation along with a wide range
of other benefits for biodiversity and people.
Box 1 summarizes the key issues that deter-
mine success or failure across all these areas.

Synergies

Protecting existing natural areas is a corner-
stone of conservation, which is even more im-
portant in a changing climate, especially areas
where there are important carbon stores or
potential refugia for species. Intact forests
are important for a range of climate-related,
ecological, and societal reasons, including car-
bon storage, carbon sequestration, local cli-
mate regulation, water supply, and biodiversity
(43). Similarly, peatlands are important carbon
stores and, like other natural wetlands, support
biodiversity and contribute to water resources
and flood management.
Given the degraded state of most of Earth’s

ecosystems, restoration is essential to realize
their full potential for adaptation and mitiga-
tion. Restoring natural ecosystem functions,
particularly hydrology and carbon dynamics,
is central to this goal (Fig. 1). Catchment res-
toration (44), including regeneration of wet-
lands and reversing the canalization of rivers,
can reduce flood risk by retainingwater higher
in the catchment. The additional advantages
of such measures include maintaining water
supplies during periods of drought, enhanc-
ing biodiversity, and contributing to carbon
storage and sequestration. Reforestation can
both sequester carbon and have benefits for
adaptation, including increased rainfall infil-
tration into soil (45, 46), floodwater impedance

(44), and provision of shade (31). Restoring
savannas, by removing trees, reseeding grass-
lands, and reinstating natural fire regimes (47),
increases resilience, supports carbon storage
in soils (48), protects water resources (49), and
reduces the risk of catastrophic fires (50).
Restoration of natural processes is likely

to have multiple benefits in tackling climate
change. However, it will increasingly need to
be complemented with active intervention
or adjustment of conservation objectives,
as described above, to reduce vulnerability
to climate change and continue delivering
adaptation and mitigation services.

Conflicts

Although nature-based solutions offer the po-
tential for win-win-win outcomes for mitiga-
tion, adaptation, and biodiversity, these are
not guaranteed, and there is potential for
conflict, especially when inappropriate inter-
ventions are employed. There are real risks in
pursuing one objective without taking proper
account of others. An important current con-
cern is tree planting in inappropriate places.
Although reforestation of formerly forested
land can bring great benefits for adaptation,
mitigation, and biodiversity, tree planting in
other places can cause serious problems and
can even exacerbate climate change impacts
(48). Naturally open ecosystems are uniquely
adapted to local conditions. Grass-dominated
savannas have diverse communities andmany
endemic species (51) that have evolved in
a high-light environment with vegetation-
environment feedbacks, including high levels
of herbivory and fire (52). Tree planting in
historically open ecosystems would be harm-
ful. Unfortunately, global scale analyses aimed
at identifying degraded forest areas suitable
for afforestation (53) cannot reliably separate
naturally open ecosystems, such as savanna,
from degraded forests. Here, other sources of
knowledge and data, including the involve-
ment of local communities, are essential. Sim-
ilarly, the afforestation of formerly treeless
peatlands that have been drained may not
supply any mitigation benefits from growing
timber because of release of GHGs from the
drained peat (54) and may, in addition, lead
to biodiversity losses (55).
Ecosystem restoration will not be possible

in all places. Many formerly forested and
peatland areas have been cleared and drained
for agriculture. Ecosystem restoration in these
regions may reduce crop production or dis-
place it to other locations where it may have
an equally or even more negative impact. A
wider and coordinated strategy to tackle cli-
mate change and promote sustainable devel-
opment therefore needs to include actions
such as reducing food waste and dietary
change and sustainable increases in agri-
cultural productivity in some places to allow
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Box 1. Assessing the potential for synergistic outcomes from ecosystem-based adaptation and
mitigation actions.

Will the action:

1. Reduce GHG emissions or promote sequestration of carbon?
2. Continue to be viable for a range of plausible future climate scenarios?
3. Increase the resilience of biodiversity to climate change?
4. Help people adapt to climate change?
5. Maintain or enhance the biodiversity of a region, now and under future climates?
6. Maintain or increase the provision of ecosystem services on which local people depend, including

water, food, and materials, now and under future climates?
7. Lead to the displacement of emissions to another location?
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restoration in others. Sustainable approaches,
including organic and regenerative farming
(56), which can support some aspects of bio-
diversity and contribute to climate change
mitigation, can also play a role in wider land-
use strategies. Negative emissions technol-
ogies, especially biofuels with carbon capture
and storage (BECCS), are often included in
scenarios for meeting the Paris Agreement
commitments, but these technologies create
a demand for land (11, 57). The benefits of
BECCS for mitigation need to be considered
alongside the implications for adaptation,
biodiversity, and food security and will re-
quire careful management and monitoring
(58). When a broader frame of reference is
considered, the protection and restoration
of natural ecosystems may, in many circum-

stances, be a better option than resorting to
BECCS.

Measuring and reporting progress

It is important that success in deploying nature-
based solutions can be monitored and eval-
uated, to ensure that all intended benefits
are delivered, that progress is being made,
and that actions can be prioritized on the
basis of evidence. To enable this to happen,
metrics are required for biodiversity, mitiga-
tion, and adaptation parameters, which reflect
the needs of local communities as well as in-
ternational reporting.
Mitigation ismeasured by quantifying emis-

sions and removal of GHGs in terms of CO2

equivalents. The Paris Agreement of theUnited
Nations Framework Convention on Climate

Change (UNFCCC) requires countries to re-
port emissions on the basis of observation-
constrained models (3). However, there are
considerable gaps and challenges in report-
ing ecosystem emissions and removals. Many
confounding factors can influence assessment
of mitigation outcomes, including the slow
rate of carbon sequestration in many ecosys-
tems and the risk of stored carbon being re-
leased by wildfire or land-use change. Hence,
long-term measurement is required, as pat-
terns of carbon uptake change over time.
Under the UNFCCC, adaptation reporting

is based on the development and delivery of
broad-ranging National Adaptation Plans
(59, 60). The Paris Agreement also stipulates
a “global stocktake,” to review adaptation
effectiveness and progress made toward the
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Fig. 1. Examples of nature-based solutions to climate change. (A) Restoration
of a lowland raised bog at Bolton Fell Moss, Cumbria, England—a former
commercial peat extraction site. (B) Natural regeneration of trees following
reduction in grazing at Creag Meagaidh National Nature Reserve, Scotland. This
is a landscape that would once have been forested below the natural treeline, but
the forest was subsequently cleared, and grazing prevented reestablishment.

(C) Establishment of woodland next to a stream provides shading to maintain
lower water temperatures and contributes to carbon sequestration. (D) Savanna
in a natural state, with large areas of open grassland and scattered trees.
Protection and restoration of this state using native herbivores and natural fire
regimes is the best approach to climate change adaptation as well as biodiversity.
This ecosystem is not suitable for tree planting.
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global adaptation goals of enhancing adapt-
ive capacity, strengthening resilience, and
reducing vulnerability to climate change.Many
variables that affect human vulnerability can
be measured in a straightforward way. For
example, fluvial flood risk relates closely to
water flow in rivers, which can be measured
directly (61). However, for biodiversity, espe-
cially at the species level, vulnerability is
harder to measure and is associated with a
high degree of uncertainty (62–64).
Lessons can be learned from the long his-

tory of species monitoring. Although well-
chosen individual species can act as indicators
for a wider range of species (65), in the con-
text of climate change, more-robust indica-
tors can be developed from the contrasting
responses of different species (66, 67), includ-
ing sophisticated assemblage structure indi-
cators (68).
Several indicators of climate change im-

pact have been developed that track observed
species’ population and community responses
to climate change (69–71). It may be possible
to develop indicators of adaptation on the
basis of further development of these impact
indicators, but when doing so, it will be im-
portant that attribution to climate change is
not confounded with other drivers of change,
which may vary between species. In addi-
tion, the efficacy of species as indicators
may change over time, as a result of altering
interspecific interactions, density dependence,
and even evolutionary adaptation. Finally, we
need to consider that the past, upon which the
indicators are devised, may not be a good pre-
dictor of the future.
Given these concerns, the development of

true outcome-based adaptation indicators is
challenging, particularly where adaptation
actions are targeted at managing change. An
alternative approach is to monitor the de-
ployment of adaptation measures for which
there is good evidence of effectiveness, such
as increasing patch size (26) and protecting
refugia (36), in combination with existing
biodiversity surveillance. At present, the main
limitation to this approach is our understand-
ing of the effectiveness of adaptationmeasures
(21) and the narrow geographical representa-
tion of existing studies, but this evidence
base should improve over time. The concept
of adaptive monitoring linked with adaptive
management (72, 73), in which both monitor-
ing and management of the natural environ-
ment develop and evolve as situations and
knowledge change, is a powerful one that will
need to be embraced given the need for prompt
action in the face of an uncertain future.

Outlook

Tackling climate change is an urgent priority
and a drive to restore degraded ecosystems
needs to be at the heart of it. Natural eco-

systems take up approximately a third of cur-
rent fossil fuel emissions and will be vital for
future carbon sequestration. The distinctive
value of natural ecosystems in climate change
mitigation is that they can protect biodiversity
and help societies to adapt to climate change.
To realize the potential of nature-based solu-
tions to climate change requires more in-
vestment, technical expertise, and the active
participation of local communities. There is
a pressing need for clear measures of success
and effective monitoring and evaluation that
cover mitigation, adaptation, and biodiversity
outcomes to drive progress.
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