Organ health and development in larval kingfish are unaffected by ocean acidification and warming

Andrea Y. Frommel Colin J. Brauner Bridie J.M. Allan Simon Nicol Darren M. Parsons Steve M.J. Pether Alvin N. Setiawan Neville Smith Philip L. Munday

Anthropogenic CO2 emissions are causing global ocean warming and ocean acidification. The early life stages of some marine fish are vulnerable to elevated ocean temperatures and CO2 concentrations, with lowered survival and growth rates most frequently documented. Underlying these effects, damage to different organs has been found as a response to elevated CO2 in larvae of several species of marine fish, yet the combined effects of acidification and warming on organ health are unknown. Yellowtail kingfish, Seriola lalandi, a circumglobal subtropical pelagic fish of high commercial and recreational value, were reared from fertilization under control (21 °C) and elevated (25 °C) temperature conditions fully crossed with control (500 µatm) and elevated (1,000 µatm) pCO2 conditions. Larvae were sampled at 11 days and 21 days post hatch for histological analysis of the eye, gills, gut, liver, pancreas, kidney and liver. Previous work found elevated temperature, but not elevated CO2, significantly reduced larval kingfish survival while increasing growth and developmental rate. The current histological analysis aimed to determine whether there were additional sublethal effects on organ condition and development and whether underlying organ damage could be responsible for the documented effects of temperature on survivorship. While damage to different organs was found in a number of larvae, these effects were not related to temperature and/or CO2 treatment. We conclude that kingfish larvae are generally vulnerable during organogenesis of the digestive system in their early development, but that this will not be exacerbated by near-future ocean warming and acidification.

CC BY 0 12 дек. 2019

Тип материала: Статья

Тематика: MARINE & FRESHWATER BIOLOGY

Язык: EN

Ранее опубликовано
PeerJ
PEERJ

Clarivate Analytics
Данные о статье из базы данных Clarivate Analytics
Accession Number: WOS:000502756300010
Pubmed ID: MEDLINE:31844598
Volume: 7
Issue: n/a
Pages: n/a
Journal expected citations: 0.315636
Category expected citations: 0.59
Percentile in subject area: 100
Journal impact factor: 2.353

Загруженные файлы:
Перевод на русский язык:

Текстовая версия

Облегченная текстовая версия статьи

Обсуждение 0
Авторизуйтесь

-- Скоро здесь будет обсуждение, вы можете стать первым--